Home / IB DP Maths / IB Math Analysis and Approach HL / MAA HL Study Notes / Pythagorean identities Study Notes

IB Mathematics AA Pythagorean identities Study Notes

IB Mathematics AA Pythagorean identities Study Notes

IB Mathematics AA Pythagorean identities Study Notes

IB Mathematics AA Pythagorean identities Study Notes Offer a clear explanation of Pythagorean identities , including various formula, rules, exam style questions as example to explain the topics. Worked Out  examples and common problem types provided here will be sufficient to cover for topic Pythagorean identities.

Pythagorean Identities

The Pythagorean identities are fundamental relationships in trigonometry, derived from the geometry of the unit circle. This section focuses on these identities, double angle identities, and their applications.

Key Concepts

  • Pythagorean Identity:
    • \(\cos^2\theta + \sin^2\theta = 1\).
  • Double Angle Identities:
    • \(\sin(2\theta) = 2\sin\theta\cos\theta\).
    • \(\cos(2\theta) = \cos^2\theta – \sin^2\theta = 2\cos^2\theta – 1 = 1 – 2\sin^2\theta\).
  • Relationships Between Trigonometric Ratios:
    • Use algebraic manipulation and Pythagorean identities to find relationships between \(\sin\theta\), \(\cos\theta\), and \(\tan\theta\) without explicitly calculating \(\theta\).

Guidance, Clarifications, and Syllabus Links

  • Illustrations: Use geometrical diagrams and dynamic graphing software to visualize the relationships between trigonometric functions and identities.
  • Applications:
    • Verify identities using algebraic techniques.
    • Derive relationships between trigonometric functions for specific cases.
  • Focus: Solve problems using identities, especially for simplifying expressions and verifying equations.

Examples

Example 1: Using the Pythagorean Identity

  • Given \(\sin\theta = \frac{3}{5}\), find \(\cos\theta\):
    • \(\cos^2\theta = 1 – \sin^2\theta = 1 – \left(\frac{3}{5}\right)^2 = 1 – \frac{9}{25} = \frac{16}{25}\).
    • \(\cos\theta = \pm\frac{4}{5}\) (choose the sign based on the quadrant).

Example 2: Double Angle Identity

  • Given \(\cos x = \frac{3}{4}\) and \(x\) is acute, find \(\sin(2x)\):
    • \(\sin x = \sqrt{1 – \cos^2x} = \sqrt{1 – \left(\frac{3}{4}\right)^2} = \sqrt{\frac{7}{16}} = \frac{\sqrt{7}}{4}\).
    • \(\sin(2x) = 2\sin x \cos x = 2 \cdot \frac{\sqrt{7}}{4} \cdot \frac{3}{4} = \frac{3\sqrt{7}}{8}\).

IB Mathematics AA SL Pythagorean Identities Exam Style Worked Out Questions

Question

In the triangle ABC, \({\rm{A\hat BC}} = 90^\circ\) , \({\text{AC}} = \sqrt {\text{2}}\) and AB = BC + 1.

a.Show that cos \(\hat A – \sin \hat A = \frac{1}{{\sqrt 2 }}\). [3]

 

b.By squaring both sides of the equation in part (a), solve the equation to find the angles in the triangle. [8]

 

c.Apply Pythagoras’ theorem in the triangle ABC to find BC, and hence show that \(\sin \hat A = \frac{{\sqrt 6 – \sqrt 2 }}{4}\). [6]

 

d. Hence, or otherwise, calculate the length of the perpendicular from B to [AC]. [4]

 
▶️Answer/Explanation

Markscheme

a.\(\cos \hat A = \frac{{{\text{BA}}}}{{\sqrt 2 }}\)     A1

\(\sin \hat A = \frac{{{\text{BC}}}}{{\sqrt 2 }}\)     A1

\(\cos \hat A – \sin \hat A = \frac{{{\text{BA}} – {\text{BC}}}}{{\sqrt 2 }}\)     R1

\( = \frac{1}{{\sqrt 2 }}\)     AG

[3 marks]

b.

\({\cos ^2}\hat A – 2\cos \hat A\sin \hat A + {\sin ^2}\hat A = \frac{1}{2}\)     M1A1

\(1 – 2\sin \hat A\cos \hat A = \frac{1}{2}\)     M1A1

\(\sin 2\hat A = \frac{1}{2}\)     M1

\(2\hat A = 30^\circ \)     A1

angles in the triangle are 15° and 75°     A1A1

Note: Accept answers in radians.

[8 marks]

c.

\({\text{B}}{{\text{C}}^2} + {({\text{BC}} + 1)^2} = 2\)     M1A1

\(2{\text{B}}{{\text{C}}^2} + 2{\text{BC}} – 1 = 0\)     A1

\({\text{BC}} = \frac{{ -2 + \sqrt {12} }}{4}\left( { = \frac{{\sqrt 3  – 1}}{2}} \right)\)     M1A1

\(\sin \hat A = \frac{{{\text{BC}}}}{{\sqrt 2 }} = \frac{{\sqrt 3 – 1}}{{2\sqrt 2 }}\)     A1

\( = \frac{{\sqrt 6 – \sqrt 2 }}{4}\)     AG

[6 marks]

d.

EITHER

\(h = {\text{ABsin}}\hat A\)     M1

\( = ({\text{BC}} + 1)\sin \hat A\)     A1

\( = \frac{{\sqrt 3  + 1}}{2} \times \frac{{\sqrt 6 – \sqrt 2 }}{4} = \frac{{\sqrt 2 }}{4}\)     M1A1

OR

\(\tfrac{1}{2}AB.BC = \tfrac{1}{2}AC.h\)     M1

\(\frac{{\sqrt 3 – 1}}{2} \cdot \frac{{\sqrt {3 + 1} }}{2} = \sqrt {2h} \)     A1

\(\frac{2}{4} = \sqrt 2 h\)     M1

\(h = \frac{1}{{2\sqrt 2 }}\)     A1

[4 marks]

 

 

 
 
 
 

Question

In the triangle ABC, \({\rm{A\hat BC}} = 90^\circ\) , \({\text{AC}} = \sqrt {\text{2}}\) and AB = BC + 1.

a.Show that cos \(\hat A – \sin \hat A = \frac{1}{{\sqrt 2 }}\). [3]

 

b.By squaring both sides of the equation in part (a), solve the equation to find the angles in the triangle. [8]

c.Apply Pythagoras’ theorem in the triangle ABC to find BC, and hence show that \(\sin \hat A = \frac{{\sqrt 6 – \sqrt 2 }}{4}\). [6]

d.Hence, or otherwise, calculate the length of the perpendicular from B to [AC]. [4]

▶️Answer/Explanation

Markscheme

a. \(\cos \hat A = \frac{{{\text{BA}}}}{{\sqrt 2 }}\)     A1

\(\sin \hat A = \frac{{{\text{BC}}}}{{\sqrt 2 }}\)     A1

\(\cos \hat A – \sin \hat A = \frac{{{\text{BA}} – {\text{BC}}}}{{\sqrt 2 }}\)     R1

\( = \frac{1}{{\sqrt 2 }}\)     AG

[3 marks]

b.

\({\cos ^2}\hat A – 2\cos \hat A\sin \hat A + {\sin ^2}\hat A = \frac{1}{2}\)     M1A1

\(1 – 2\sin \hat A\cos \hat A = \frac{1}{2}\)     M1A1

\(\sin 2\hat A = \frac{1}{2}\)     M1

\(2\hat A = 30^\circ \)     A1

angles in the triangle are 15° and 75°     A1A1

Note: Accept answers in radians.

[8 marks]

c.

\({\text{B}}{{\text{C}}^2} + {({\text{BC}} + 1)^2} = 2\)     M1A1

\(2{\text{B}}{{\text{C}}^2} + 2{\text{BC}} – 1 = 0\)     A1

\({\text{BC}} = \frac{{ -2 + \sqrt {12} }}{4}\left( { = \frac{{\sqrt 3  – 1}}{2}} \right)\)     M1A1

\(\sin \hat A = \frac{{{\text{BC}}}}{{\sqrt 2 }} = \frac{{\sqrt 3 – 1}}{{2\sqrt 2 }}\)     A1

\( = \frac{{\sqrt 6 – \sqrt 2 }}{4}\)     AG

[6 marks]

d.

EITHER

\(h = {\text{ABsin}}\hat A\)     M1

\( = ({\text{BC}} + 1)\sin \hat A\)     A1

\( = \frac{{\sqrt 3  + 1}}{2} \times \frac{{\sqrt 6 – \sqrt 2 }}{4} = \frac{{\sqrt 2 }}{4}\)     M1A1

OR

\(\tfrac{1}{2}AB.BC = \tfrac{1}{2}AC.h\)     M1

\(\frac{{\sqrt 3 – 1}}{2} \cdot \frac{{\sqrt {3 + 1} }}{2} = \sqrt {2h} \)     A1

\(\frac{2}{4} = \sqrt 2 h\)     M1

\(h = \frac{1}{{2\sqrt 2 }}\)     A1

[4 marks]

More resources for IB Mathematics AA SL

Scroll to Top