Home / IB DP Maths 2026, 2027 & 2028 / IB Math Analysis and Approach HL / MAA HL Study Notes / IB Mathematics AA SL Indefinite integral of xn , sinx, cosx, and ex Study Notes

IB Mathematics AA SL Indefinite integral of xn , sinx, cosx, and ex Study Notes

IB Mathematics AA SL Indefinite integral of xn , sinx, cosx, and ex Study Notes - New Syllabus

IB Mathematics AA SL Indefinite integral of xn , sinx, cosx, and ex Study Notes

LEARNING OBJECTIVE

  • Indefinite integral 

Key Concepts: 

  • Indefinite integral 
  • Composite Function
  • Integration by inspection

MAA HL and SL Notes – All topics

Indefinite Integrals of Standard Functions

Indefinite Integrals of Standard Functions

Indefinite integration refers to finding the general antiderivative (primitive function) of a given function. These do not include limits and always include a constant of integration \( C \).

Function \( f(x) \)Antiderivative \( \int f(x) \, dx \)
\( x^n \), \( n \ne -1 \)\( \dfrac{x^{n+1}}{n+1} + C \)
\( \dfrac{1}{x} \)\( \ln |x| + C \)
\( e^x \)\( e^x + C \)
\( \sin x \)\( -\cos x + C \)
\( \cos x \)\( \sin x + C \)

Example

Find the integral of \( f(x) = 3x^2 + 4\cos x – \dfrac{2}{x} \)

▶️ Answer/Explanation

Solution:

Integrate term by term using standard formulas:

$ \int (3x^2 + 4\cos x – \dfrac{2}{x})\, dx = 3 \int x^2\, dx + 4 \int \cos x\, dx – 2 \int \dfrac{1}{x}\, dx$
$= 3 \cdot \dfrac{x^3}{3} + 4 \sin x – 2 \ln |x| + C $
Final Answer: \( x^3 + 4\sin x – 2\ln|x| + C \)

Integrating Composites with Linear Terms

Integrating Composites with Linear Terms

When integrating expressions of the form \( f(ax + b) \), use the rule:

\( \int f(ax + b)\, dx = \dfrac{1}{a}F(ax + b) + C \)

where \( F \) is the antiderivative of \( f \).

Example

Evaluate \( \displaystyle \int \cos(2x + 3)\, dx \)

▶️ Answer/Explanation

Solution:

\( \int \cos(2x + 3) \, dx = \dfrac{1}{2} \sin(2x + 3) + C \)

Example

Evaluate \( \int e^{3x + 2} \, dx \)

▶️ Answer/Explanation

Solution:

Let \( u = 3x + 2 \), so \( \frac{du}{dx} = 3 \Rightarrow dx = \frac{du}{3} \)

Substitute into the integral: \[ \int e^{3x + 2} \, dx = \int e^u \cdot \frac{1}{3} \, du = \frac{1}{3} \int e^u \, du = \frac{1}{3}e^u + C \]
Replace \( u \) with \( 3x + 2 \):
Final Answer: \( \frac{1}{3}e^{3x + 2} + C \)

Integration by Inspection or Substitution

Integration by Inspection or Substitution

Use this when the integrand resembles a chain rule derivative:

\( \int k g'(x) f(g(x)) \, dx \)

Steps for Substitution:

  1. Let \( u = g(x) \)
  2. Then \( du = g'(x)\, dx \)
  3. Rewrite the integral in terms of \( u \)
  4. Integrate and substitute back \( x \)

Example

Evaluate \( \int 2x(x^2 + 1)^4 \, dx \)

▶️ Answer/Explanation

Solution:

Recognize the inner function:
Let \( u = x^2 + 1 \Rightarrow \frac{du}{dx} = 2x \)

This matches the 2x outside:
$ \int 2x(x^2 + 1)^4 \, dx = \int (x^2 + 1)^4 \cdot 2x \, dx = \int u^4 \, du = \frac{u^5}{5} + C $

Now substitute back \( u = x^2 + 1 \):
Final Answer: \( \dfrac{(x^2 + 1)^5}{5} + C \)

Example

Evaluate \( \int \dfrac{\sin x}{\cos x} \, dx \)

▶️ Answer/Explanation

Solution:

Let \( u = \cos x \Rightarrow du = -\sin x \, dx \)

Then: $ \int \frac{\sin x}{\cos x} \, dx = -\int \frac{1}{u} \, du = -\ln |u| + C = -\ln |\cos x| + C $

Final Answer: \( -\ln |\cos x| + C \)

Example

Evaluate \( \int 4x\sin^2 x \, dx \)

▶️ Answer/Explanation

 Use the identity \( \sin^2 x = \dfrac{1 – \cos(2x)}{2} \):

$ \int 4x\sin^2 x \, dx = \int 4x \cdot \frac{1 – \cos(2x)}{2} \, dx = \int 2x(1 – \cos(2x)) \, dx $
Split the integral:
$ \int 2x \, dx – \int 2x\cos(2x) \, dx $ First term: \( \int 2x \, dx = x^2 \)

 Use integration by parts:
Let \( u = x \), \( dv = \cos(2x)\, dx \) ⇒ \( du = dx \), \( v = \dfrac{1}{2}\sin(2x) \)

$ \int 2x\cos(2x)\, dx = 2 \left( x \cdot \frac{1}{2}\sin(2x) – \int \frac{1}{2}\sin(2x)\, dx \right) $ $ = x\sin(2x) + \frac{1}{2}\cos(2x) $

Final Answer: $ \int 4x\sin^2 x \, dx = x^2 – x\sin(2x) – \frac{1}{2}\cos(2x) + C $
Scroll to Top