IBDP Maths AA HL Topic - SL 1.3 Geometric sequences and series HL Paper 1- Exam Style Questions
IB MATHEMATICS AA HL – Practice Questions- Paper1-All Topics
Topic : SL 1.3 Geometric sequences and series HL Paper 1
Topic 1- Number and algebra- Weightage : 15 %
All Questions for Topic : SL 1.3 –Geometric sequences and series Use of the formulae for the nth term and the sum of the first n terms of the sequence. Use of sigma notation for the sums of geometric sequences. Applications .Examples include the spread of disease, salary increase and decrease and population growth
Find the first term \( u_1 \) and the common ratio \( r \).
▶️ Answer/Explanation
\( u_2 = ar \),
\( u_3 = ar^2 \).
\[ \frac{9}{r^2} + \frac{9r}{r^2} + 9 = 13 \]
\[ \frac{9(1 + r)}{r^2} + 9 = 13 \]
\[ r = \frac{9 \pm \sqrt{81 + 144}}{8} = \frac{9 \pm \sqrt{225}}{8} = \frac{9 \pm 15}{8} \]
If \( r = 3 \), then \( u_1 = 1 \)
If \( r = -\frac{3}{4} \), then \( u_1 = 16 \)
Consider the arithmetic sequence \(u_{1} , u_{2} , u_{3}\) , ….
The sum of the first n terms of this sequence is given by \(S_{n} = n^2+4n\)
(a) (i) Find the sum of the first five terms.
(ii) Given that \(S_{6}\) = 60, find \(u_{6}\) .
(b) Find \(u_{1}\) .
(c) Hence or otherwise, write an expression for \(u_{n}\) in terms of n.
Consider a geometric sequence, \(v_{n}\) , where \(v_{2}\) = \(u_{1}\) and \(v_{4}\) = \(u_{6}\) .
(d) Find the possible values of the common ratio, r.
(e) Given that \(v_{99}\) < 0, find \(v_{5}\)
▶️ Answer/Explanation
(a)(i)
\( S_n = n^2 + 4n \).
For \( n = 5 \): \( S_5 = 5^2 + 4(5) = 25 + 20 = 45 \).
(a)(ii)
Given \( S_6 = 60 \), \( S_5 = 45 \).
\( u_6 = S_6 – S_5 = 60 – 45 = 15 \).
(b)
For \( n = 1 \): \( S_1 = 1^2 + 4(1) = 5 \).
Thus, \( u_1 = 5 \).
(c)
\( u_n = S_n – S_{n-1} \).
\( S_{n-1} = (n-1)^2 + 4(n-1) = n^2 + 2n – 3 \).
\( u_n = (n^2 + 4n) – (n^2 + 2n – 3) = 2n + 3 \).
(d)
Given: \( v_2 = u_1 = 5 \), \( v_4 = u_6 = 15 \).
For geometric sequence: \( v_2 = v_1 r \), \( v_4 = v_1 r^3 \).
\( \frac{v_4}{v_2} = r^2 = \frac{15}{5} = 3 \).
Thus, \( r = \pm \sqrt{3} \).
(e)
Given \( v_{99} < 0 \), \( v_{99} = v_1 r^{98} \).
Since \( r^{98} > 0 \), \( v_1 < 0 \).
From \( v_2 = v_1 r = 5 \), if \( r = -\sqrt{3} \), \( v_1 = \frac{5}{-\sqrt{3}} \).
\( v_5 = v_1 (-\sqrt{3})^4 = \frac{5}{-\sqrt{3}} \cdot 9 = -15\sqrt{3} \).
Markscheme
(a)(i) \( S_5 = 5^2 + 4(5) = 45 \).
(a)(ii) \( S_6 = 60 \), \( S_5 = 45 \), \( u_6 = 60 – 45 = 15 \).
(b) \( S_1 = 1^2 + 4(1) = 5 \), so \( u_1 = 5 \).
(c) \( u_2 = S_2 – S_1 = 12 – 5 = 7 \), \( d = 7 – 5 = 2 \), so \( u_n = 5 + (n-1)2 = 2n + 3 \).
(d) \( v_2 = 5 \), \( v_4 = 15 \), \( v_4 = v_2 r^2 \), \( 15 = 5r^2 \), \( r^2 = 3 \), \( r = \pm \sqrt{3} \).
(e) \( v_{99} < 0 \implies r = -\sqrt{3} \), \( v_1 = \frac{5}{-\sqrt{3}} \), \( v_5 = \frac{5}{-\sqrt{3}} (-\sqrt{3})^4 = -15\sqrt{3} \).