Home / IB DP Maths 2026, 2027 & 2028 / Application and Interpretation HL / IB Mathematics AI AHL Definite and indefinite integration MAI Study Notes

IB Mathematics AI AHL Definite and indefinite integration MAI Study Notes - New Syllabus

IB Mathematics AI AHL Definite and indefinite integration MAI Study Notes

LEARNING OBJECTIVE

  • Definite and indefinite integration 

Key Concepts: 

  • Definite and indefinite integration  
  • Integration by inspection, or substitution 

MAI HL and SL Notes – All topics

DEFINITE AND INDEFINITE INTEGRATION OF STANDARD FUNCTIONS

Definition:

Integration is the reverse process of differentiation. It allows us to find a function when its derivative is known and calculate the area under curves.

Types of Integration:

Indefinite Integration:

It represents a general form of the antiderivative of a function and includes a constant of integration \( C \). It does not have limits.

Definite Integration:

It calculates the net area under the curve between specific limits \( a \) and \( b \). The result is a number, no constant \( C \).

Key Differences:

AspectIndefinite IntegrationDefinite Integration
LimitsNo limitsSpecific limits \( a \) to \( b \)
ResultFunction + \( C \)Numerical value
RepresentsFamily of functionsArea under the curve

Standard integrals include:

  • Power rule: \( \displaystyle\int x^n \, dx = \dfrac{x^{n+1}}{n+1} + C \) for \( n \neq -1 \)
  • \( \displaystyle\int \dfrac{1}{x} \, dx = \ln|x| + C \)
  • \( \displaystyle\int \sin x \, dx = -\cos x + C \)
  • \(\displaystyle \int \cos x \, dx = \sin x + C \)
  • \(\displaystyle \int \dfrac{1}{cos^2(x)} \, dx =\ tan x+ C \)
  • \( \displaystyle\int e^x \, dx = e^x + C \)

Example: Indefinite Integral

Evaluate the integral: \( \int \left( 2x^3 – 3x + 4 \right) dx \)

▶️Answer/Explanation

Use the power rule on each term:

  • \( \int 2x^3 \, dx = \frac{2x^4}{4} = \frac{x^4}{2} \)
  • \( \int -3x \, dx = \frac{-3x^2}{2} \)
  • \( \int 4 \, dx = 4x \)

Final Answer: \( \frac{x^4}{2} – \frac{3x^2}{2} + 4x + C \)

Example: Definite Integral

Evaluate the integral: \( \int_{1}^{3} (x^2 + 2) dx \)

▶️Answer/Explanation
  • \( \int x^2 \, dx = \frac{x^3}{3} \)
  • \( \int 2 \, dx = 2x \)

Combined integral: \( \frac{x^3}{3} + 2x \)

Apply limits:

\( \left( \frac{3^3}{3} + 2 \times 3 \right) – \left( \frac{1^3}{3} + 2 \times 1 \right) = \left( \frac{27}{3} + 6 \right) – \left( \frac{1}{3} + 2 \right) \)

\( = (9 + 6) – \left( \frac{1}{3} + 2 \right) = 15 – \left( \frac{1}{3} + 2 \right) = 15 – \frac{7}{3} = \frac{38}{3} \)

Final Answer: \( \frac{38}{3} \)

INTEGRATION BY INSPECTION

Definition: 

This method involves recognizing the derivative of a known function within the integrand, allowing for a direct “guess and check” anti-derivative.

It is often used when the integrand matches a known derivative form, especially with composite expressions.

Example

Evaluate: \( \int \frac{1}{3x + 2} \, dx \)

▶️Answer/Explanation

Recognize the integral as matching \( \int \frac{1}{ax + b} \, dx = \frac{1}{a} \ln|ax + b| + C \)

Here: \( a = 3, b = 2 \)

Answer: \( \frac{1}{3} \ln|3x + 2| + C \)

Example

Evaluate: \( \int \frac{\sin x}{\cos x} \, dx \)

▶️Answer/Explanation
  • Let \( u = \cos x \Rightarrow \frac{du}{dx} = -\sin x \Rightarrow dx = -\frac{du}{\sin x} \)
  • Rewrite integral: \( \int \frac{\sin x}{\cos x} \, dx = \int \frac{1}{u} \cdot (-du) = -\int \frac{1}{u} \, du \)
  • Integral: \( -\ln |u| + C = -\ln |\cos x| + C \)

Final Answer: \( -\ln |\cos x| + C \)

INTEGRATION BY SUBSTITUTION

Definition:

This method simplifies an integral by substituting a part of the expression with a new variable. It is effective when the integrand is the product of a function and its derivative.

General form:

\( \int f(g(x))g'(x) \, dx = \int f(u) \, du \), where \( u = g(x) \)

General Steps of Substitution

  • Identify the inner function \( g(x) \) such that its derivative \( g'(x) \) appears in the integrand.
  • Substitute \( u = g(x) \).
  • Find \( du = g'(x) \, dx \) and rewrite the integral in terms of \( u \).
  • Integrate with respect to \( u \).
  • Substitute back \( x \) to get the final answer.

Example

Evaluate: \( \int \sin(2x + 5) \, dx \)

▶️Answer/Explanation
  • Let \( u = 2x + 5 \Rightarrow \frac{du}{dx} = 2 \Rightarrow dx = \frac{du}{2} \)
  • Substitute: \( \int \sin(u) \cdot \frac{1}{2} du = \frac{1}{2} \int \sin(u) \, du \)
  • Integral: \( \frac{1}{2}(-\cos u) + C = -\frac{1}{2} \cos(2x + 5) + C \)

Final Answer: \( -\frac{1}{2} \cos(2x + 5) + C \)

Example

Evaluate: \( \int 4x \sin x^2 \, dx \)

▶️Answer/Explanation
  • Let \( u = x^2 \Rightarrow \frac{du}{dx} = 2x \Rightarrow dx = \frac{du}{2x} \)
  • Rewrite integral: \( \int 4x \sin(x^2) \, dx = 4 \int x \sin(x^2) \, dx \)
  • Substitute: \( 4 \int \sin(u) \cdot \frac{du}{2} = 2 \int \sin(u) \, du \)
  • Integral: \( 2(-\cos u) + C = -2\cos(x^2) + C \)

Final Answer: \( -2\cos(x^2) + C \)

MOSCOW MATHEMATICAL PAPYRUS

The Moscow Mathematical Papyrus (circa 1850 BCE) contains the oldest known correct formula for the volume of a frustum of a square pyramid, found in Problem 14.

The formula given by the Egyptians is:

\( V = \frac{h}{3} \left( a^2 + ab + b^2 \right) \)

This formula shows the advanced practical geometry skills of ancient Egyptian scribes, used for architecture, construction, and land surveying.

It is exactly equivalent to the modern formula used today for calculating the volume of a frustum of a square pyramid, showing their remarkable mathematical understanding.

Example

Calculate the volume of a pyramidal frustum with:

  • Lower base side length: \( a = 4 \) units
  • Upper base side length: \( b = 2 \) units
  • Height: \( h = 6 \) units
▶️Answer/Explanation
  • Formula: \( V = \frac{h}{3} \left( a^2 + ab + b^2 \right) \)
  • Substitute values:
  • \( V = \frac{6}{3} \left( 4^2 + 4 \times 2 + 2^2 \right) \)
  • \( V = 2 \left( 16 + 8 + 4 \right) = 2 \times 28 = 56 \, \text{cubic units} \)

Final Answer: \( 56 \, \text{cubic units} \)

Scroll to Top