IB Mathematics AI AHL Linear transformation MAI Study Notes - New Syllabus
IB Mathematics AI AHL Linear transformation MAI Study Notes
LEARNING OBJECTIVE
- Linear transformation of a single random variable
Key Concepts:
- Expected value/Variance of linear combinations of n random variables.
- unbiased estimation
- IBDP Maths AI SL- IB Style Practice Questions with Answer-Topic Wise-Paper 1
- IBDP Maths AI SL- IB Style Practice Questions with Answer-Topic Wise-Paper 2
- IB DP Maths AI HL- IB Style Practice Questions with Answer-Topic Wise-Paper 1
- IB DP Maths AI HL- IB Style Practice Questions with Answer-Topic Wise-Paper 2
- IB DP Maths AI HL- IB Style Practice Questions with Answer-Topic Wise-Paper 3
LINEAR TRANSFORMATION OF A SINGLE RANDOM VARIABLE
Let $X$ be a random variable, and let $a$ and $b$ be constants. A linear transformation of $X$ is defined as:
$
Y = aX + b
$
Expected Value of a Linear Transformation
Definition: The expected value (mean) of a linear transformation preserves linearity.
$
E(aX + b) = aE(X) + b
$
The expectation is linear, meaning scaling and shifting behave predictably.
If $\mu_X = E(X)$, then $E(Y) = a\mu_X + b$
Variance of a Linear Transformation
Definition: The variance of a linear transformation depends only on the scaling factor, not the constant term.
$
\operatorname{Var}(aX + b) = a^2 \operatorname{Var}(X)
$
Shifting the distribution by $b$ does not affect the spread (variance).
If $\sigma_X^2 = \operatorname{Var}(X)$, then $\operatorname{Var}(Y) = a^2 \sigma_X^2$
Example Let \( X \) be a random variable with:
Define a new random variable: \( Y = 3X – 7 \) Find:
▶️Answer/ExplanationSolution 1. Expected Value: \( E(Y) = E(3X – 7) = 3E(X) – 7 = 3(5) – 7 = 15 – 7 = \boxed{8} \) 2. Variance: \( \text{Var}(Y) = \text{Var}(3X – 7) = 3^2 \cdot \text{Var}(X) = 9 \cdot 4 = \boxed{36} \) |
LINEAR COMBINATIONS OF N RANDOM VARIABLES
Expected Value of Linear Combinations of $n$ Random Variables
Let $X_1, X_2, …, X_n$ be random variables with expected values $E(X_i) = \mu_i$, and let $a_1, a_2, …, a_n$ be constants.
Let:
$
Y = a_1X_1 + a_2X_2 + \cdots + a_nX_n
$
Expected Value:
$
E(Y) = E(a_1X_1 + \cdots + a_nX_n) = a_1E(X_1) + \cdots + a_nE(X_n)
$
Linearity of expectation applies even if the variables are dependent.
Variance of Linear Combinations of $n$ Random Variables
If the random variables $X_1, …, X_n$ are independent, then:
$
\operatorname{Var}(Y) = \operatorname{Var}(a_1X_1 + \cdots + a_nX_n) = a_1^2\operatorname{Var}(X_1) + \cdots + a_n^2\operatorname{Var}(X_n)
$
If the variables are not independent, covariances must be included:
$
\operatorname{Var}(Y) = \sum_{i=1}^{n} a_i^2 \operatorname{Var}(X_i) + 2 \sum_{i<j} a_i a_j \operatorname{Cov}(X_i, X_j)
$
Example Let \( X \) and \( Y \) be independent random variables with:
Define: \( Z = 2X – 3Y \) Find:
▶️Answer/ExplanationSolution 1. Expected Value: \( E(Z) = 2E(X) – 3E(Y) = 2(10) – 3(4) = 20 – 12 = \rm{8} \) 2. Variance: \( \text{Var}(Z) = 4 \cdot 9 + 9 \cdot 1 = 36 + 9 = \rm{45} \) |
UNBIASED ESTIMATORS
An estimator $\hat{\theta}$ of a population parameter $\theta$ is unbiased if:
$
E(\hat{\theta}) = \theta
$
Unbiased estimators give correct population parameter on average.
Sample Mean as an Unbiased Estimator of Population Mean
Let $X_1, X_2, …, X_n$ be a random sample from a population with mean $\mu$.
Sample Mean:
$
\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i
$
Expected Value:
$
E(\bar{X}) = \mu
$
Therefore, $\bar{X}$ is an unbiased estimator of the population mean.
Sample Variance as an Unbiased Estimator of Population Variance
Population Variance:
$
\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i – \mu)^2
$
Sample Variance (Unbiased):
$
s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i – \bar{X})^2
$
Expected Value:
$
E(s^2) = \sigma^2
$
Hence, $s^2$ is an unbiased estimator of the population variance.
The denominator $n – 1$ corrects the bias, known as Bessel’s correction.
Example A random sample of size \( n = 4 \) is taken with values: \( x_1 = 8,\quad x_2 = 10,\quad x_3 = 13,\quad x_4 = 11 \) Find:
▶️Answer/ExplanationSolution 1. Sample Mean: \( \bar{x} = \frac{1}{4}(8 + 10 + 13 + 11) = \frac{42}{4} = \rm{10.5} \) 2. Sample Variance: Use the formula: \( s^2 = \frac{1}{n – 1} \sum_{i=1}^{n} (x_i – \bar{x})^2 \)
\( s^2 = \frac{1}{3}(6.25 + 0.25 + 6.25 + 0.25) = \frac{13}{3} = \rm{4.\overline{3}} \) |