IB Mathematics AI SL Eigenvalues and eigenvectors Study Notes - New Syllabus
IB Mathematics AI SL Eigenvalues and eigenvectors Study Notes
LEARNING OBJECTIVE
- Eigenvalues and eigenvectors.
Key Concepts:
- –
- IBDP Maths AI SL- IB Style Practice Questions with Answer-Topic Wise-Paper 1
- IBDP Maths AI SL- IB Style Practice Questions with Answer-Topic Wise-Paper 2
- IB DP Maths AI HL- IB Style Practice Questions with Answer-Topic Wise-Paper 1
- IB DP Maths AI HL- IB Style Practice Questions with Answer-Topic Wise-Paper 2
- IB DP Maths AI HL- IB Style Practice Questions with Answer-Topic Wise-Paper 3
♦EIGENVALUES AND EIGENVECTORS
Consider the matrix:
\( A = \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix} \)
Observe what happens when we multiply \( A \) by the vector \( u = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \):
\( Au = \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 15 \\ 20 \end{pmatrix} = 5 \begin{pmatrix} 3 \\ 4 \end{pmatrix} = 5u \)
We obtain a multiple of \( u \). In such a case, we say that \( 5 \) is an eigenvalue of the matrix \( A \), and \( u \) is a corresponding eigenvector. Our task here is to find all such characteristic vectors.
Let \( A \) be a square \( n \times n \) matrix. The value \( \lambda \in \mathbb{R} \) is said to be an eigenvalue of \( A \) if there exists a non-zero vector \( u \) such that:
\( Au = \lambda u \)
Such a vector is called an eigenvector (corresponding to the eigenvalue \( \lambda \)).
♦FINDING EIGENVALUES AND EIGENVECTORS
Notice that:
\( \lambda \text{ is an eigenvalue of } A \iff Au = \lambda u \text{ for some } u \neq 0 \)
\( \iff Au – \lambda u = 0 \text{ for some } u \neq 0 \)
\( \iff (A – \lambda I)u = 0 \text{ for some } u \neq 0 \)
\( \iff \text{the system } (A – \lambda I)X = 0 \text{ has a nonzero solution} \)
\( \iff A – \lambda I \text{ has no inverse} \)
\( \iff \det(A – \lambda I) = 0 \)
For a \( 2 \times 2 \) matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \), the expression \( \det(A – \lambda I) \) is:
\( \begin{vmatrix} a – \lambda & b \\ c & d – \lambda \end{vmatrix} = (a – \lambda)(d – \lambda) – bc = \lambda^2 – (a + d)\lambda + ad – bc \)
This is known as the characteristic polynomial of matrix \( A \). Notice that the constant term is \( \det A \).
In practice:
We find the eigenvalues by solving $\det(A – \lambda I) = 0$
For each eigenvalue $\lambda$, we solve the corresponding system $(A – \lambda I)X = 0$ to find the eigenvectors
The following example will clarify the process:
Example $A = \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix}$ ▶️Answer/ExplanationSolution: \(\det(A – \lambda I) = \begin{vmatrix} 1-\lambda & 3 \\ 4 & 2-\lambda \end{vmatrix} = \lambda^2 – 3\lambda – 10\) There are two eigenvalues: $\lambda = 5$, $\lambda = -2$ • For $\lambda = 5$, solve $(A – 5I)X = 0$: Using first equation: $-4x + 3y = 0 \Rightarrow \frac{x}{y} = \frac{3}{4}$ • For $\lambda = -2$, solve $(A + 2I)X = 0$: Using first equation: $3x + 3y = 0 \Rightarrow x = -y$ |
NOTICE
The characteristic polynomial for $2 \times 2$ matrices is quadratic with either:
Two distinct real eigenvalues (our focus)
One repeated real eigenvalue
No real eigenvalues
One eigenvalue: \(A = \begin{pmatrix} 3 & -1 \\ 1 & 5 \end{pmatrix}\) ▶️Answer/ExplanationSolution: Characteristic polynomial: $(\lambda-4)^2 \Rightarrow \lambda = 4$ (repeated) |
No real eigenvalues: \(A = \begin{pmatrix} -1 & -1 \\ 2 & 1 \end{pmatrix}\) ▶️Answer/ExplanationSolution: Characteristic polynomial: $\lambda^2 + 1 = 0 \Rightarrow$ no real solutions |
♦ DIAGONALIZATION
For matrices with two distinct eigenvalues, we can write:
\(A = PDP^{-1} \quad \text{where } D \text{ is diagonal}\)
Example $A = \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix}$ ▶️Answer/ExplanationSolution: Let $P = \begin{pmatrix} 3 & -1 \\ 4 & 1 \end{pmatrix}$ (columns are eigenvectors) Then $A = PDP^{-1}$, which can be verified by: Alternative ordering: This diagonalization is useful for computing powers: |
Example Compute $A^n$ for $A = \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix}$ Using $A = PDP^{-1}$: ▶️Answer/ExplanationSolution: \(A^n = \begin{pmatrix} 3 & -1 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} 5^n & 0 \\ 0 & (-2)^n \end{pmatrix} \begin{pmatrix} \frac{1}{7} & \frac{1}{7} \\ -\frac{4}{7} & \frac{3}{7} \end{pmatrix}\) For example: |
♦ CAYLEY-HAMILTON THEOREM
Every matrix satisfies its characteristic equation.
Example For $A = \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix}$: ▶️Answer/ExplanationSolution: Characteristic equation: $\lambda^2 – 3\lambda – 10 = 0$ Verification: |
♦Applications:
1. Compute $A^{-1}$:
\(A^2 – 3A = 10I \Rightarrow A(A – 3I) = 10I \Rightarrow A^{-1} = \frac{A – 3I}{10}\)
2. Compute higher powers recursively:
\(A^2 = 3A + 10I\)
\(A^3 = 3A^2 + 10A = 3(3A + 10I) + 10A = 19A + 30I\)
\(A^4 = 19A^2 + 30A = 19(3A + 10I) + 30A = 87A + 190I\)