Home / IB DP Maths 2026, 2027 & 2028 / Application and Interpretation HL / IB Mathematics AI SL Laws of exponents Study Notes

IB Mathematics AI SL Laws of exponents Study Notes - New Syllabus

IB Mathematics AI SL Laws of exponents Study Notes

LEARNING OBJECTIVE

  • Laws of exponents with integer exponents.

Key Concepts: 

  • Exponents 

MAI HL and SL Notes – All topics

EXPONENTS

♦ The Exponential \( 2^x \)

Define \( 2^x \) for \( x \) in

1. N: \( 2^0 = 1 \), \( 2^n = 2 \times 2 \times \cdots \times 2 \) (n times)
2. Z: \( 2^{-n} = \frac{1}{2^n} \)
3. Q: \( 2^{m/n} = \sqrt[n]{2^m} \)
4. R: For irrational \( x \), \( 2^x \) is calculated using a calculator.

♦ General Definition for \( a^x \):

 \( a^0 = 1 \)
 \( a^n = a \times a \times \cdots \times a \) (n times)
 \( a^{-n} = \frac{1}{a^n} \)
 \( a^{m/n} = \sqrt[n]{a^m} \)
 For irrational \( x \), \( a^x \) is calculated using a calculator.

Notice:

 \( a^x \) is defined for \( a < 0 \) only if \( x \) is an integer.
 \( 0^x = 0 \) for \( x \neq 0 \). \( 0^0 \) is undefined.

♦ Properties of Exponents:


1. \( a^x a^y = a^{x+y} \)
2. \( \frac{a^x}{a^y} = a^{x-y} \)
3. \( (ab)^x = a^x b^x \)
4. \( \left( \frac{a}{b} \right)^x = \frac{a^x}{b^x} \)
5. \( (a^x)^y = a^{xy} \)

Example

Solve the following,

1. \( 5^{-2} = \, ? \)
2. \( \left( \frac{1}{5} \right)^{-2} = \, ? \)
3. \( \left( \frac{3}{5} \right)^{-2} = \, ? \)
4. \( 8^{2/3} = \, ? \)
5. \( 27^{-4/3} = \, ? \)

▶️Answer/Explanation

Solution:

1. \( 5^{-2} = \frac{1}{5^2} = \frac{1}{25} \)
2. \( \left( \frac{1}{5} \right)^{-2} = 5^2 = 25 \)
3. \( \left( \frac{3}{5} \right)^{-2} = \left( \frac{5}{3} \right)^2 = \frac{25}{9} \)
4. \( 8^{2/3} = \sqrt[3]{8^2} = \sqrt[3]{64} = 4 \)
5. \( 27^{-4/3} = \frac{1}{81} \)

Example

1. \( a^3 a^2 \).
2. \( \frac{a^6}{a^2} \).
3. \( \frac{x^3 x^5}{x^4} \).
4. \( 2^{x+1} \cdot 2^{3x} \).
5. Express \( 8x^3 \) as a perfect cube.
6. \( \frac{x^3 y^3}{z^3} \).
7. Express \( \frac{16a^2}{b^4} \) as a perfect square.

▶️Answer/Explanation

Solution:

1. \( a^3 a^2 = a^{3+2} = a^5 \)
2. \( \frac{a^6}{a^2} = a^{6-2} = a^4 \)
3. \( \frac{x^3 x^5}{x^4} = \frac{x^{3+5}}{x^4} = \frac{x^8}{x^4} = x^{8-4} = x^4 \)
4. \( 2^{x+1} \cdot 2^{3x} = 2^{(x+1) + 3x} = 2^{4x+1} \)
5. \( 8x^3 = (2x)^3 \)
6. \( \frac{x^3 y^3}{z^3} = \left( \frac{xy}{z} \right)^3 \)
7. \( \frac{16a^2}{b^4} = \left( \frac{4a}{b^2} \right)^2 \)

♦ Simple Exponential Equations

If \( a \neq 1 \), then:
$ a^x = a^y \implies x = y $

Example

Find the value of x

(a) \( 2^{3x-1} = 2^{x+2} \)

Find the value of x

(b) \( 2^{3x-1} = 4^{x+2} \)

▶️Answer/Explanation

Solution:

(a)$ 3x – 1 = x + 2 \implies x = \frac{3}{2} $

(b)$ 4 = 2^2 \implies 3x – 1 = 2x + 4 \implies x = 5 $

Natural Logarithms (Base e)

♦ Understanding Logarithms

Logarithms are the inverse of exponentiation. If you’ve seen equations like \( 2^x = 1096 \) or \( 3^x = \frac{1}{27} \), logarithms help us solve them. The rule is:

\( a^x = b \iff x = \log_a b \)

This tells us that a logarithm answers the question: “To what power must we raise \( a \) to get \( b \)?”

Conditions:

\( a > 0, \, a \ne 1, \, b > 0 \)

\(\log_{10} x\): Common logarithm (base 10)
\(\log_e x = \ln x\): Natural logarithm (base e)

Example 

Solve 

\(5^x = 125\)

Show all the proper steps.

▶️Answer/Explanation

Solution:

Take logarithm base 5 on both sides:

\(x = \log_5 125\)

Since \(5^3 = 125\), the solution is:

\(x = 3\)

Example 

With the help of GDC

Solve 

\(4^x = 50\)

▶️Answer/Explanation

Solution:

Take logarithm base 4 on both sides:

\(x = \log_4 50\)

Use the change of base rule and calculator:

\(x = \frac{\log_{10} 50}{\log_{10} 4} \approx \frac{1.6989}{0.6021} \approx 2.82\)

\(x \approx 2.82\)

♦ Natural Logarithms (Base e)

A natural logarithm, written as ln or \(\log_e\), is a logarithm with base e, where \(e \approx 2.71828\). These are commonly used in scientific and calculus-based applications because of their unique behavior.

Remember: \(\log_e x = \ln x\)

♦ Estimating Logarithms Numerically

Logarithmic values are often irrational, so calculators or computers (like a GDC) are needed to estimate their values accurately.

Example

Use calculator to find:

\(\log_{10} 6 \approx ?\)

\(\ln 6 \approx ?\)

▶️ Answer/Explanation

Common Logarithm:

$10^{0.7782} \approx 6$
$\log_{10} 6 \approx 0.7782$

Natural Logarithm:

$e^{1.7918} \approx 6$
$\ln 6 \approx 1.7918$

Scroll to Top