Home / IB DP Maths / Application and Interpretation HL / IB Mathematics AI SL length of an arc area of a sector MAI Study Notes

IB Mathematics AI SL length of an arc area of a sector MAI Study Notes - New Syllabus

IB Mathematics AI SL length of an arc area of a sector MAI Study Notes

LEARNING OBJECTIVE

  • The circle: length of an arc; area of a sector.

Key Concepts: 

  • Arcs & Sectors

MAI HL and SL Notes – All topics

ARCS AND SECTORS

    

Consider a circle of radius \( r \). Let \( \theta \) be the angle shown below:

The length of the arc \( AB \) is given by:

$ L = \frac{\theta}{360} \times 2\pi r $

The area of the sector \( OAB \) is given by:

$ A = \frac{\theta}{360} \times \pi r^2 $
(where \( \theta \) is measured in degrees).

Example


Consider the following sector of a circle with \( r = 5 \, \text{m} \) and \( \theta = 36^\circ \):

Length of arc:
Area of sector:
Perimeter of sector: 

▶️Answer/Explanation

Solution:

Length of arc:
$ L = \frac{36}{360} \times 2\pi \cdot 5 = \pi \approx 3.14 \, \text{m} $

Area of sector:
$ A = \frac{36}{360} \times \pi \cdot 5^2 = \frac{5\pi}{2} \approx 7.85 \, \text{m}^2 $

Moreover:
Perimeter of sector: \( L + r + r = 3.14 + 5 + 5 = 13.14 \, \text{m} \).

Example

Let \( r = 3 \, \text{cm} \) and \( \theta = 30^\circ \). Compare:

a) the lengths of the arc \( AB \) and the chord \( AB \) (distance \( AB \)),
b) the areas of the sector \( OAB \) and the triangle \( OAB \).

▶️Answer/Explanation

Solution:

a)
$ L = \frac{30}{360} \times 2\pi \cdot 3 = \frac{\pi}{2} \approx 1.57 \, \text{cm} $

For \( AB \), we use COSINE RULE:
$ AB^2 = 3^2 + 3^2 – 2 \cdot 3 \cdot 3 \cos 30^\circ = 18 – 18 \cdot \frac{\sqrt{3}}{2} \approx 2.41 \Rightarrow AB \approx 1.55 \, \text{cm} $

The length of the arc \( AB \) is slightly greater than the chord \( AB \) (as expected).

b)
$ A_{\text{sector}} = \frac{30}{360} \times \pi \cdot 3^2 = \frac{3\pi}{4} \approx 2.36 \, \text{cm}^2 $
$ A_{\text{triangle}} = \frac{1}{2} \cdot 3 \cdot 3 \cdot \sin 30^\circ = 2.25 \, \text{cm}^2 $

An Informal Idea about Major/Minor Segment

The region between the chord AB and the arc AB is known as segment.

From Upper Example:

$ A_{\text{sector}} = \frac{30}{360} \times \pi \cdot 3^2 = \frac{3\pi}{4} \approx 2.36 \, \text{cm}^2 $
$ A_{\text{triangle}} = \frac{1}{2} \cdot 3 \cdot 3 \cdot \sin 30^\circ = 2.25 \, \text{cm}^2 $

The area of this segment is

$ A_{\text{sector}} – A_{\text{triangle}} = 2.36 – 2.25 = 0.11 $

NOTICE. The formulas hold for the major sector OACB and the major arc ACB.

We simply set \(\theta = 360^\circ – 30^\circ = 330^\circ\).

NOTICE. The formulas hold for the major sector OACB and the major arc ACB.

We simply set \( \theta = 360^\circ – 30^\circ = 330^\circ \).

$ A_{\text{major-sector}} = \frac{330}{360} \times \pi \cdot 3^2 = \frac{33\pi}{4} \approx 25.9 \, \text{cm}^2 $

$ L_{\text{major-arc}} = \frac{330}{360} \times 2\pi \cdot 3 = \frac{11\pi}{2} \approx 17.3 \, \text{cm} $

Finally, the perimeter of the major sector is

$ L + r + r = 17.3 + 3 + 3 = 23.3 $

Scroll to Top