IB Mathematics AI AHL Modulus–argument (polar) form Study Notes - New Syllabus
IB Mathematics AI AHL Modulus–argument (polar) form Study Notes
LEARNING OBJECTIVE
- Modulus–argument (polar) form
Key Concepts:
- Modulus–argument (polar) form:
- Exponential form
- Conversion
- Geometric interpretation of complex numbers
- IBDP Maths AI SL- IB Style Practice Questions with Answer-Topic Wise-Paper 1
- IBDP Maths AI SL- IB Style Practice Questions with Answer-Topic Wise-Paper 2
- IB DP Maths AI HL- IB Style Practice Questions with Answer-Topic Wise-Paper 1
- IB DP Maths AI HL- IB Style Practice Questions with Answer-Topic Wise-Paper 2
- IB DP Maths AI HL- IB Style Practice Questions with Answer-Topic Wise-Paper 3
THE POLAR FORM (MODULUS-ARGUMENT FORM)
A complex number \( z = x + yi \) can also be described using polar coordinates \((r, \theta)\):
\( r = \) length of the vector (modulus \( |z| \)).
\( \theta = \) angle between the \( x \)-axis and the vector (argument \( \arg(z) \)).
♦Relations:
\( \cos \theta = \frac{x}{r}, \quad \sin \theta = \frac{y}{r}, \quad \tan \theta = \frac{y}{x} \)
Thus, \( z \) can be written in polar form:
\( z = r (\cos \theta + i \sin \theta) \)
♦REMARK:
The argument \( \theta \) is not unique. For the principal argument, we agree:
\( -180^\circ < \theta \leq 180^\circ \quad \text{or} \quad -\pi < \theta \leq \pi \)
Example Convert $z = \sqrt{3} – i$ to polar form. Sketch the final answer on Argand plane. ▶️Answer/ExplanationSolution: $r = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{4} = 2$ Since $z$ is in the fourth quadrant: $\therefore z = 2(\cos 330^\circ + i \sin 330^\circ) = 2 \operatorname{cis} 330^\circ$ |
Example Find the polar form of: \( z_1 = 1 + i : ? \) ▶️Answer/ExplanationSolution: \( z_1 = 1 + i \): \( \theta = \frac{\pi}{4} \) All have modulus \( \sqrt{2} \). |
CONVERSION BETWEEN DIFFERENT FORMS
♦Transformation from Cartesian to Polar Form:
Given \( z = x + yi \), find \( r \) and \( \theta \):
\( r = |z| = \sqrt{x^2 + y^2} \)
\( \tan \theta = \frac{y}{x}, \quad \text{considering the quadrant of } (x, y). \)
♦Transformation from Polar to Cartesian Form:
Simply compute \( x = r \cos \theta \) and \( y = r \sin \theta \).
GDC Tip: Use the “COMPLEX” mode to switch between forms.
♦CIS FORM AND EULER’S FORM
CIS Form: \( z = r \operatorname{cis} \theta = r (\cos \theta + i \sin \theta) \).
Euler’s Form: \( z = r e^{i\theta} \), where \( e^{i\theta} = \cos \theta + i \sin \theta \).
Example Find All forms of \( z_1 = 1 + i \), \( z_2 = 3 + 4i \), \( z_3 = 3 – 4i \): ▶️Answer/ExplanationSolution: |
♦NOTICE
Any complex number with modulus 1 has polar form \( z = \operatorname{cis} \theta \).
For real numbers \( \pm a \), the argument is \( 0 \) (if \( a > 0 \)) or \( \pi \) (if \( a < 0 \)).
For imaginary numbers \( \pm ai \), the argument is \( \frac{\pi}{2} \) or \( -\frac{\pi}{2} \).
The conjugate of \( z = r (\cos \theta + i \sin \theta) \) is \( \overline{z} = r (\cos \theta – i \sin \theta) = r \operatorname{cis}(-\theta) \).
PRODUCTS, QUOTIENTS, AND POWERS IN POLAR FORM
For \( z_1 = r_1 \operatorname{cis} \theta_1 \) and \( z_2 = r_2 \operatorname{cis} \theta_2 \):
Product:
\( z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2) \).
Quotient:
\( \frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 – \theta_2) \).
Power (De Moivre’s Law):
\( z^n = r^n \operatorname{cis}(n \theta) \).
♦Properties:
Modulus:
\( |z_1 z_2| = |z_1| |z_2| \), \( \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} \), \( |z^n| = |z|^n \).
Argument:
\( \arg(z_1 z_2) = \arg(z_1) + \arg(z_2) \), \( \arg\left( \frac{z_1}{z_2} \right) = \arg(z_1) – \arg(z_2) \), \( \arg(z^n) = n \arg(z) \).
Example \( z = 2 \operatorname{cis} \frac{\pi}{6} \) and \( w = \operatorname{cis} \frac{\pi}{3} \). (i) \( z w=?\) (ii) \( \frac{z}{w}=?\) (iii) \( z^6=?\) ▶️Answer/ExplanationSolution: \( z w = 2 \operatorname{cis} \frac{\pi}{2} = 2i \). |
Example Calculate \( (1 + i)^{10} \) Answer it in form of $i$ ▶️Answer/ExplanationSolution: \( 1 + i = \sqrt{2} \operatorname{cis} \frac{\pi}{4} \). |
Example Using De Moivre’s theorem, Derive trigonometric identities: \( z = \operatorname{cis} \theta \Rightarrow z^2 = \cos 2\theta + i \sin 2\theta \). ▶️Answer/ExplanationSolution: \( z = \operatorname{cis} \theta \Rightarrow z^2 = \cos 2\theta + i \sin 2\theta \). |
ADDING SINUSOIDAL FUNCTIONS
Express sums of sinusoidal functions as a single function:
\( A_1 \cos(x + \theta_1) + A_2 \cos(x + \theta_2) = A \cos(x + \theta) \).
Use Euler’s form:
\( A \cos(x + \theta) = \operatorname{Re}(A e^{i(x + \theta)}) \).
Example For \( f(x) = 4 \cos x \) and \( g(x) = 3 \cos\left(x + \frac{\pi}{4}\right) \): Add both Functions. ▶️Answer/ExplanationSolution: \( f(x) + g(x) = \operatorname{Re}(4 e^{ix} + 3 e^{i(x + \pi/4)}) = \operatorname{Re}(6.48 e^{i(x + 0.334)}) = 6.48 \cos(x + 0.334) \). Application: Adding waves of the same frequency results in a wave of the same frequency. |
Example For \( V_1(t) = 7 \sin(4t – 1) \) and \( V_2(t) = 2 \sin(4t + 3) \) Add both Functions. ▶️Answer/ExplanationSolution: \( V_1(t) + V_2(t) = 5.89 \sin(4t – 1.26) \). |
GEOMETRICAL INTERPRETATION OF COMPLEX NUMBERS
Modulus
The modulus represents the distance from the origin to the point in the complex plane.
Argument
The argument represents the angle from the positive real axis to the line connecting the origin to the point.
Multiplication of Complex Numbers
Geometrically, multiplying two complex numbers in polar form:
- Multiplies their moduli
- Adds their arguments
This results in:
- A scaling (change in size based on modulus)
- A rotation (change in direction based on angle addition)
Division of Complex Numbers
Geometrically, dividing two complex numbers in polar form:
- Divides their moduli
- Subtracts their arguments
This results in:
- Inverse scaling (shrinking or enlarging)
- Rotation in the opposite direction (based on angle subtraction)
Example Consider the complex number $z = 5 + 3i$. If $iz$ is represented on an Argand diagram by the point $A$, in which quadrant of the Argand plane does $A$ lie? Sketch it on Argand plane. ▶️Answer/ExplanationSolution: $ Now, on an Argand diagram, a complex number $a + bi$ is represented by the point $(a, b)$. So: $z = 5 + 3i$ corresponds to the point $(5, 3)$ Thus, the point $A$, which represents $iz$, lies in the second quadrant (where real part is negative and imaginary part is positive). Specifically, the original point was rotated around the origin by an angle of $\frac{\pi}{2}$ radians |