IB Mathematics AI SL Operations with numbers Study Notes - New Syllabus
IB Mathematics AI SL Operations with numbers Study Notes
LEARNING OBJECTIVE
- Operations with numbers in the form a×10k where 1≤a<10 and k is an integer.
Key Concepts:
- Numbers
- Standard Form
- IBDP Maths AI SL- IB Style Practice Questions with Answer-Topic Wise-Paper 1
- IBDP Maths AI SL- IB Style Practice Questions with Answer-Topic Wise-Paper 2
- IB DP Maths AI HL- IB Style Practice Questions with Answer-Topic Wise-Paper 1
- IB DP Maths AI HL- IB Style Practice Questions with Answer-Topic Wise-Paper 2
- IB DP Maths AI HL- IB Style Practice Questions with Answer-Topic Wise-Paper 3
NUMBERS
♦ Definition
$N = {0, 1, 2, 3, 4, …}$ (natural numbers)
$Z = {0, ±1, ±2, ±3, …}$ (integers)
$Q = {\frac{a}{b} ~|~ a, b ∈ Z, b ≠ 0}$ (rational numbers)
$\text{R = rational + irrational numbers (real numbers)}$
♦ Irrational numbers
$√2, √3, √5,$ and all $√a$ where a is not a perfect square
$π = 3.14159…$
$e = 2.7182818..$.
$Z ^+= {1, 2, 3, …}$ (positive integers)
$Z^-= {-1, -2, -3, …}$ (negative integers)
$Z^* = {±1, ±2, ±3, …}$ (non-zero integers, i.e., $Z – {0}$)
$x ∈ [a, b]$ for $a ≤ x ≤ b$
$x ∈ (a, b)$ for $a < x < b$
$x ∈ [a, b)$ for $a ≤ x < b$
$x ∈ [a, +∞)$ for $x ≥ a$
$x ∈ (-∞, a]$ for $x ≤ a$
$x ∈ (-∞, a] ∪ [b, +∞)$ for $x ≤ a ~or ~x ≥ b$
ROUNDING – SCIENTIFIC FORM – % ERROR
♦ Rounding of Numbers
The numerical answer to a problem is not always exact, and we often need to round numbers.
Decimal Places (d.p.) vs. Significant Figures (s.f.)
Consider the number
$ 123.4567 $
♦ Rounding to decimal places:
$\text{1 d.p.: 123.5}$
$\text{2 d.p.: 123.46}$
$\text{3 d.p.: 123.457}$
♦ Rounding to significant figures:
$\text{4 s.f.: 123.5}$
$\text{5 s.f.: 123.46}$
$\text{ 6 s.f.: 123.457}$
$\text{2 s.f.: 120}$
$\text{1 s.f.: 100}$
♦ Rule for rounding
If the next digit is 0-4, the digit remains unchanged.
If the next digit is 5-9, the digit increases by 1.
♦ Scientific Notation $(a × 10^k)$
Any number can be written as:
$ a \times 10^k \quad \text{where} \quad 1 \leq a < 10 $
$ 123.4567 = 1.234567 \times 10^2 $
(Moved the decimal point 2 places to the left ⇒ k = 2)
For small numbers:
$ 0.000012345 = 1.2345 \times 10^{-5} $
(Moved the decimal point 5 places to the right ⇒ k = -5)
Scientific form to 3 s.f.:
$ 1.2345 \times 10^2 \equiv 1.23 \times 10^2 $
Calculator notation:
\( 1.2345E+02 \) means \( 1.2345 \times 10^2 \)
Example
Give the standard form of:
$ s = 4.501 \times 10^7 \quad t = 4.501 \times 10^{-7} $
▶️Answer/Explanation
$ s = 45010000 $
$ t = 0.0000004501 $
♦ Percentage Error
When approximating a value (e.g., π), we introduce an error.
For π ≈ 3.14 (to 3 s.f.):
Absolute error: \( |π – 3.14| = 0.00159265… \)
Percentage error:
$ \epsilon = \left| \frac{V_A – V_E}{V_E} \right| \times 100\% $
where \( V_E \) is the exact value and \( V_A \) is the approximate value.
▶️Answer/Explanation
For π:
$ \epsilon = \left| \frac{3.14 – π}{π} \right| \times 100\% ≈ 0.05\% $