Home / IB DP / Chemistry / SL / Exam Style Questions / R 1.2 Energy cycles in reactions SL Paper 1

IBDP Chemistry - Reactivity 1.2 Energy cycles in reactions- IB Style Questions For SL Paper 1A - FA 2025

Question

Ammonia, \(NH_{3}\), and nitrous acid, \(HNO_{2}\), are both compounds containing nitrogen. What are the oxidation numbers of nitrogen in each of these substances?
 \(NH_{3}\)\(HNO_{2}\)
(A)\(+3\)\(+3\)
(B)\(-3\)\(-3\)
(C)\(+3\)\(-3\)
(D)\(-3\)\(+3\)
▶️ Answer/Explanation
Detailed solution

1. Calculate Oxidation State in \(NH_{3}\):

  • Hydrogen is \(+1\) (with non-metals).
  • \(N + 3(+1) = 0 \implies N = -3\).

2. Calculate Oxidation State in \(HNO_{2}\):

  • Hydrogen is \(+1\). Oxygen is \(-2\).
  • \(1(+1) + N + 2(-2) = 0\)
  • \(1 + N – 4 = 0 \implies N – 3 = 0 \implies N = +3\).

3. Match to Options:
\(NH_3: -3\), \(HNO_2: +3\).
Answer: (D)

Question

Consider the following equations.
\(2\text{Fe}(s) + \tfrac{3}{2}\text{O}_2(g) \rightarrow \text{Fe}_2\text{O}_3(s) \qquad \Delta H^{\circ} = x\)
\(\text{CO}(g) + \tfrac{1}{2}\text{O}_2(g) \rightarrow \text{CO}_2(g) \qquad \Delta H^{\circ} = y\)
What is the enthalpy change of the reaction below?
\(\text{Fe}_2\text{O}_3(s) + 3\text{CO}(g) \rightarrow 3\text{CO}_2(g) + 2\text{Fe}(s)\)
A. \(\;3y – x\)
B. \(\;3y + x\)
C. \(\;-3y – x\)
D. \(\;-3y + x\)
▶️ Answer/Explanation
Detailed solution

We use Hess’s law to build the target reaction from the given ones.

1. Reverse the first equation so that \(\text{Fe}_2\text{O}_3\) is a reactant and \(\text{Fe}\) is a product: \[ \text{Fe}_2\text{O}_3(s) \rightarrow 2\text{Fe}(s) + \tfrac{3}{2}\text{O}_2(g) \] Reversing changes the sign of the enthalpy: \[ \Delta H^{\circ}_1 = -x \]

2. Multiply the second equation by \(3\) so that we get \(3\text{CO}\) and \(3\text{CO}_2\): \[ 3\text{CO}(g) + \tfrac{3}{2}\text{O}_2(g) \rightarrow 3\text{CO}_2(g) \] The enthalpy change becomes: \[ \Delta H^{\circ}_2 = 3y \]

3. Add these two modified equations: \[ \begin{aligned} \text{Fe}_2\text{O}_3(s) &\rightarrow 2\text{Fe}(s) + \tfrac{3}{2}\text{O}_2(g) \\ 3\text{CO}(g) + \tfrac{3}{2}\text{O}_2(g) &\rightarrow 3\text{CO}_2(g) \end{aligned} \] Cancelling \(\tfrac{3}{2}\text{O}_2(g)\) on both sides gives: \[ \text{Fe}_2\text{O}_3(s) + 3\text{CO}(g) \rightarrow 3\text{CO}_2(g) + 2\text{Fe}(s) \] which is exactly the target reaction.

The overall enthalpy change is: \[ \Delta H^{\circ}_\text{reaction} = (-x) + 3y = 3y – x \]

Answer: (A)

Question

Hydrazine reacts with oxygen.
\[ \text{N}_2\text{H}_4(l) + \text{O}_2(g) \rightarrow \text{N}_2(g) + 2\text{H}_2\text{O}(l) \qquad \Delta H^\circ = -623\ \text{kJ} \]
What is the standard enthalpy of formation of \(\text{N}_2\text{H}_4(l)\) in kJ? The standard enthalpy of formation of \(\text{H}_2\text{O}(l)\) is \(-286\ \text{kJ}\).
A. \(-623 – 286\)
B. \(-623 + 572\)
C. \(-572 + 623\)
D. \(-286 + 623\)
▶️ Answer/Explanation
Detailed solution

Use the enthalpy of reaction formula based on formation enthalpies:

\[ \Delta H^\circ_{\text{rxn}} = \sum \Delta H_f^\circ(\text{products}) – \sum \Delta H_f^\circ(\text{reactants}) \]

Given:
\(\Delta H^\circ_{\text{rxn}} = -623\ \text{kJ}\) \(\Delta H_f^\circ(\text{H}_2\text{O}(l)) = -286\ \text{kJ}\) \(\Delta H_f^\circ(\text{N}_2(g)) = 0\) (elemental form) \(\Delta H_f^\circ(\text{O}_2(g)) = 0\)

Substitute into the formula: \[ -623 = \left[0 + 2(-286)\right] – \left[\Delta H_f^\circ(\text{N}_2\text{H}_4(l)) + 0\right] \]

Simplify: \[ -623 = -572 – \Delta H_f^\circ(\text{N}_2\text{H}_4(l)) \]

Solve for the unknown: \[ \Delta H_f^\circ(\text{N}_2\text{H}_4(l)) = -572 + 623 \]

Answer: (C)

Scroll to Top