Home / IB DP / IB DP Chemistry 2026, 2027 & 2028 / IB DP Chemistry SL & HL Study Notes / IB DP Chemistry -R3.2.12 Standard electrode potentials – Study Notes

IB DP Chemistry -R3.2.12 Standard electrode potentials – Study Notes

IB DP Chemistry -R3.2.12 Standard electrode potentials - Study Notes - New Syllabus - 2026, 2027 & 2028

IB DP Chemistry – R3.2.12 Standard electrode potentials – Study Notes – New Syllabus

IITian Academy excellent Introduction to the Proton transfer reactions – Study Notes and effective strategies will help you prepare for your IB DP Chemistry  exam.

IB DP Chemistry Study Notes – All Topics

Reactivity 3.2.12 — The Hydrogen Half-Cell and Standard Electrode Potentials

Reactivity 3.2.12 — The Hydrogen Half-Cell and Standard Electrode Potentials

 Standard Hydrogen Electrode (SHE):

The standard hydrogen electrode (SHE) is the reference electrode with an assigned potential of 0.00 V.

Half-equation: \( \text{H}^+(aq, 1\ \text{mol dm}^{-3}) + e^- \rightleftharpoons \dfrac{1}{2} \text{H}_2(g, 100\ \text{kPa}) \)

  • Platinum electrode is used as an inert surface.
  • Standard conditions: 1 mol dm-3, 100 kPa, 298 K.

Standard Electrode Potential (\( E^\circ \)):

It is the voltage measured when a half-cell is connected to the SHE under standard conditions.Measures the tendency of a substance to be reduced.

  • More positive \( E^\circ \) → greater tendency to gain electrons (reduction).
  • More negative \( E^\circ \) → greater tendency to lose electrons (oxidation).

Interpretation of Standard Electrode Potentials:

  • Given as standard reduction potentials.
  • Positive \( E^\circ \) → species more readily reduced (oxidizing agent).
  • Negative \( E^\circ \) → species more readily oxidized (reducing agent).

Standard Electrode Potentials (IB DP Chemistry Data Booklet Examples):

Half-Equation (Reduction)\( E^\circ \) / V
\( \text{F}_2(g) + 2e^- \rightarrow 2\text{F}^-(aq) \)+2.87
\( \text{MnO}_4^-(aq) + 8\text{H}^+(aq) + 5e^- \rightarrow \text{Mn}^{2+}(aq) + 4\text{H}_2\text{O}(l) \)+1.51
\( \text{Cl}_2(g) + 2e^- \rightarrow 2\text{Cl}^-(aq) \)+1.36
\( \text{O}_2(g) + 4H^+(aq) + 4e^- \rightarrow 2\text{H}_2\text{O}(l) \)+1.23
\( \text{Ag}^+(aq) + e^- \rightarrow \text{Ag}(s) \)+0.80
\( \text{Fe}^{3+}(aq) + e^- \rightarrow \text{Fe}^{2+}(aq) \)+0.77
\( \text{Cu}^{2+}(aq) + 2e^- \rightarrow \text{Cu}(s) \)+0.34
\( \text{H}^+(aq) + e^- \rightarrow \dfrac{1}{2} \text{H}_2(g) \)0.00 (by convention)
\( \text{Fe}^{2+}(aq) + 2e^- \rightarrow \text{Fe}(s) \)-0.44
\( \text{Zn}^{2+}(aq) + 2e^- \rightarrow \text{Zn}(s) \)-0.76
\( \text{Al}^{3+}(aq) + 3e^- \rightarrow \text{Al}(s) \)-1.66
\( \text{Na}^+(aq) + e^- \rightarrow \text{Na}(s) \)-2.71

Example 

Will zinc displace copper from copper(II) sulfate solution?

▶️Answer/Explanation

From the data:
\( \text{Zn}^{2+} + 2e^- \rightarrow \text{Zn} \quad E^\circ = -0.76\ \text{V} \)
\( \text{Cu}^{2+} + 2e^- \rightarrow \text{Cu} \quad E^\circ = +0.34\ \text{V} \)

Zinc has a more negative \( E^\circ \) → it is the reducing agent → gets oxidized.
Copper(II) is the oxidizing agent → gets reduced.

Oxidation: \( \text{Zn}(s) \rightarrow \text{Zn}^{2+}(aq) + 2e^- \)
Reduction: \( \text{Cu}^{2+}(aq) + 2e^- \rightarrow \text{Cu}(s) \)
Overall: \( \text{Zn}(s) + \text{Cu}^{2+}(aq) \rightarrow \text{Zn}^{2+}(aq) + \text{Cu}(s) \)
\( E^\circ_{\text{cell}} = +0.34 – (-0.76) = +1.10\ \text{V} \)
Since \( E^\circ_{\text{cell}} > 0 \), the reaction is spontaneous.

Example 

The following half-equations are given:

\( \text{Fe}^{2+} + 2e^- \rightarrow \text{Fe} \quad E^\circ = -0.44\ \text{V} \)
\( \text{Ag}^+ + e^- \rightarrow \text{Ag} \quad E^\circ = +0.80\ \text{V} \)

Determine the overall redox reaction and cell potential.

▶️Answer/Explanation

Ag+ has the higher \( E^\circ \) → it gets reduced.
Fe is oxidized.

Oxidation: \( \text{Fe}(s) \rightarrow \text{Fe}^{2+}(aq) + 2e^- \)
Reduction: \( 2\text{Ag}^+(aq) + 2e^- \rightarrow 2\text{Ag}(s) \)
Overall: \( \text{Fe}(s) + 2\text{Ag}^+(aq) \rightarrow \text{Fe}^{2+}(aq) + 2\text{Ag}(s) \)
\( E^\circ_{\text{cell}} = +0.80 – (-0.44) = +1.24\ \text{V} \)

Example 

Using the following half-equations:

\( \text{MnO}_4^- + 8\text{H}^+ + 5e^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O} \quad E^\circ = +1.51\ \text{V} \)
\( \text{Fe}^{2+} \rightarrow \text{Fe}^{3+} + e^- \quad E^\circ = +0.77\ \text{V} \)

Determine if the reaction is feasible and write the balanced overall equation.

▶️Answer/Explanation

MnO4 has the higher \( E^\circ \) → it is reduced.
Fe2+ is oxidized.

Multiply iron equation ×5 to match electrons:
Ox: \( 5\text{Fe}^{2+} \rightarrow 5\text{Fe}^{3+} + 5e^- \)
Red: \( \text{MnO}_4^- + 8\text{H}^+ + 5e^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O} \)
Overall: \( \text{MnO}_4^- + 8\text{H}^+ + 5\text{Fe}^{2+} \rightarrow \text{Mn}^{2+} + 5\text{Fe}^{3+} + 4\text{H}_2\text{O} \)
\( E^\circ_{\text{cell}} = +1.51 – (+0.77) = +0.74\ \text{V} \) → spontaneous.

Scroll to Top