Home / iGCSE Mathematics (0580) : C7.1 Describe a translation by using a vector iGCSE Style Questions Per ap1

iGCSE Mathematics (0580) : C7.1 Describe a translation by using a vector iGCSE Style Questions Per ap1

Question

The diagram shows two shapes, A and B, on a grid.

(a) Describe fully the single transformation that maps shape A onto shape B.

(b) On the grid, draw the image of shape A after a reflection in the line $x =-1$.

▶️ Answer/Explanation
Solution

(a) Ans: Rotation, 90° anticlockwise about (0,0)

Observe the positions of shapes A and B. Shape A is rotated 90° anticlockwise around the origin (0,0) to align perfectly with shape B. The transformation preserves the shape’s size and orientation relative to the rotation.

(b)

To reflect shape A over the line $x = -1$, each point of A is mirrored across the vertical line at $x = -1$. The reflected image will be congruent but flipped, maintaining the same distance from the line of reflection.

Question

$\textbf{v}= \begin{pmatrix} -1\\ 3\end{pmatrix}$, $\textbf{y}= \begin{pmatrix} 2\\ 5\end{pmatrix}$

Find:

$(a)\; \textbf{v} – \textbf{y}$

$(b)\; 2\textbf{v}$

▶️ Answer/Explanation
Solution

Ans:

(a) \( \begin{pmatrix} -3 \\ -2 \end{pmatrix} \)

(b) \( \begin{pmatrix} -2 \\ 6 \end{pmatrix} \)

Explanation:

(a) Subtract corresponding components of vectors \(\textbf{v}\) and \(\textbf{y}\):

\[ \textbf{v} – \textbf{y} = \begin{pmatrix} -1 – 2 \\ 3 – 5 \end{pmatrix} = \begin{pmatrix} -3 \\ -2 \end{pmatrix} \]

(b) Multiply each component of \(\textbf{v}\) by 2:

\[ 2\textbf{v} = \begin{pmatrix} -2 \\ 6 \end{pmatrix} \]

Scroll to Top