Home / iGCSE Mathematics (0580) :E1.3 Calculate with squares, square roots, cubes and cube roots and other powers and roots of numbers..iGCSE Style Questions Paper 4

iGCSE Mathematics (0580) :E1.3 Calculate with squares, square roots, cubes and cube roots and other powers and roots of numbers..iGCSE Style Questions Paper 4

Question

(a) Write as a single fraction in its simplest form:

\(\frac{x+3}{x-3} – \frac{x-2}{x+2}\)

(b) Solve for \(k\):

\(2^{12} \div 2^{\frac{k}{2}} = 32\)

(c) Expand and simplify:

\((y+3)(y-4)(2y-1)\)

(d) Make \(x\) the subject of the formula:

\(x = \frac{3 + x}{y}\)

▶️ Answer/Explanation
Solution

(a) Ans: \(\frac{10x}{(x-3)(x+2)}\) or \(\frac{10x}{x^2 – x – 6}\)

Combine the fractions using a common denominator \((x-3)(x+2)\):

\(\frac{(x+3)(x+2) – (x-2)(x-3)}{(x-3)(x+2)} = \frac{x^2 + 5x + 6 – (x^2 – 5x + 6)}{(x-3)(x+2)} = \frac{10x}{x^2 – x – 6}\).

(b) Ans: \(k = 14\)

Simplify the equation using exponent rules:

\(2^{12 – \frac{k}{2}} = 2^5 \implies 12 – \frac{k}{2} = 5 \implies \frac{k}{2} = 7 \implies k = 14\).

(c) Ans: \(2y^3 – 3y^2 – 23y + 12\)

First expand \((y+3)(y-4) = y^2 – y – 12\), then multiply by \((2y-1)\):

\((y^2 – y – 12)(2y – 1) = 2y^3 – y^2 – 2y^2 + y – 24y + 12 = 2y^3 – 3y^2 – 23y + 12\).

(d) Ans: \(x = \frac{3}{y – 1}\)

Rearrange the equation to solve for \(x\):

\(x = \frac{3 + x}{y} \implies xy = 3 + x \implies xy – x = 3 \implies x(y – 1) = 3 \implies x = \frac{3}{y – 1}\).

Question

(a) \(s=ut+\frac{1}{2}at^{2}\)
Find the value of s when u = 5.2, t = 7 and a = 1.6

(b) Simplify.

(i) 3a – 5b – a + 2b

(ii) \(\frac{5}{3x}\times \frac{9x}{20}\)

(c) Solve

(i) \( \frac{15}{x}=-3\)

(ii) 4(5 – 3x) = 23

(d) Simplify.
\((27x^{9})^{\frac{2}{3}}\)

(e) Expand and simplify.
(3x – 5y)(2x + y)

▶️ Answer/Explanation
Solution

(a) Ans: 75.6

Substitute values into the equation: \(s = (5.2)(7) + \frac{1}{2}(1.6)(49)\).

Calculate: \(36.4 + 39.2 = 75.6\).

(b)(i) Ans: 2a – 3b

Combine like terms: \((3a – a) + (-5b + 2b) = 2a – 3b\).

(b)(ii) Ans: \(\frac{3}{4}\)

Multiply numerators and denominators: \(\frac{45x}{60x} = \frac{3}{4}\) after simplification.

(c)(i) Ans: -5

Cross-multiply: \(15 = -3x\) → \(x = -5\).

(c)(ii) Ans: \(-\frac{1}{4}\)

Expand and solve: \(20 – 12x = 23\) → \(-12x = 3\) → \(x = -0.25\).

(d) Ans: \(9x^6\)

Apply exponent rules: \(27^{2/3} = 9\) and \((x^9)^{2/3} = x^6\).

(e) Ans: \(6x^2 – 7xy – 5y^2\)

Use FOIL method: \(6x^2 + 3xy – 10xy – 5y^2\) then combine like terms.

Scroll to Top