Home / iGCSE Mathematics (0580) :E2.1 Use letters to express generalized numbers and express basic arithmetic processes algebraically.iGCSE Style Questions Paper 4

iGCSE Mathematics (0580) :E2.1 Use letters to express generalized numbers and express basic arithmetic processes algebraically.iGCSE Style Questions Paper 4

Question

$(\mathbf{a})$

$C=\frac{1}{4}xy^2$

$(\mathbf{i})$ Find $C$ when $x=5$ and $y=8.$

$(\mathbf{ii})$ Find the positive value of $y$ when $C=15$ and $x=2.4.$

$(\mathbf{b})$ Write as a single fraction in its simplest form.

$\frac{4}{x-1}-\frac{3}{2x+5}$

$(\mathbf{c})$ Expand and simplify

$(2x+3)(4-x)^2$

$(\mathbf{d})$ Simplify $\left(\frac{y^8}{16x^{16}}\right)^{-\frac{3}{4}}$

▶️ Answer/Explanation
Solution

(a)(i) Ans: 80

Substitute \( x = 5 \) and \( y = 8 \) into \( C = \frac{1}{4}xy^2 \):

\( C = \frac{1}{4} \times 5 \times 64 = 80 \).

(a)(ii) Ans: 5

Substitute \( C = 15 \) and \( x = 2.4 \) into \( C = \frac{1}{4}xy^2 \):

\( 15 = \frac{1}{4} \times 2.4 \times y^2 \implies y^2 = 25 \implies y = 5 \).

(b) Ans: \(\frac{5x + 23}{(x-1)(2x+5)}\)

Combine the fractions using a common denominator:

\(\frac{4(2x+5) – 3(x-1)}{(x-1)(2x+5)} = \frac{5x + 23}{(x-1)(2x+5)}\).

(c) Ans: \(2x^3 – 13x^2 + 8x + 48\)

First expand \((4-x)^2 = 16 – 8x + x^2\), then multiply by \((2x+3)\):

\(2x^3 – 16x^2 + 32x + 3x^2 – 24x + 48 = 2x^3 – 13x^2 + 8x + 48\).

(d) Ans: \(\frac{8x^{12}}{y^6}\)

Apply exponent rules:

\(\left(\frac{y^8}{16x^{16}}\right)^{-\frac{3}{4}} = \frac{8x^{12}}{y^6}\).

Question

(a) Solve the following equations.

(i) \(\frac{5}{w} = \frac{3}{w+1}\)

(ii) \((y+1)^2 = 4\)

(iii) \(\frac{x+1}{3} – \frac{x-2}{5} = 2\)

(b)(i) Factorise \(u^2 – 9u – 10\).

(ii) Solve the equation \(u^2 – 9u – 10 = 0\).

The area of the triangle is equal to the area of the square. All lengths are in centimetres.

(i) Show that \(x^2 – 3x – 2 = 0\).

(ii) Solve the equation \(x^2 – 3x – 2 = 0\), giving your answers correct to 2 decimal places. Show all your working.

(iii) Calculate the area of one of the shapes.

▶️ Answer/Explanation
Solution

(a)

(i) Ans: \(w = -2.5\)

Cross-multiply: \(5(w+1) = 3w \implies 5w + 5 = 3w \implies 2w = -5 \implies w = -2.5\).

(ii) Ans: \(y = -3\) or \(y = 1\)

Take square roots: \(y+1 = \pm 2 \implies y = -3\) or \(y = 1\).

(iii) Ans: \(x = 9.5\)

Multiply by 15 (LCM of 3 and 5): \(5(x+1) – 3(x-2) = 30 \implies 5x + 5 – 3x + 6 = 30 \implies 2x = 19 \implies x = 9.5\).

(b)

(i) Ans: \((u – 10)(u + 1)\)

Find two numbers that multiply to \(-10\) and add to \(-9\): \(-10\) and \(+1\).

(ii) Ans: \(u = -1\) or \(u = 10\)

Set each factor to zero: \(u – 10 = 0 \implies u = 10\) and \(u + 1 = 0 \implies u = -1\).

(c)

(i) Show \(x^2 – 3x – 2 = 0\)

Area of triangle = \(\frac{(x+1)(x+2)}{2}\), area of square = \(x^2\). Set equal: \(\frac{(x+1)(x+2)}{2} = x^2\). Expand and simplify to get \(x^2 – 3x – 2 = 0\).

(ii) Ans: \(x \approx -0.56\) or \(x \approx 3.56\)

Use quadratic formula: \(x = \frac{3 \pm \sqrt{9 + 8}}{2} = \frac{3 \pm \sqrt{17}}{2}\).

(iii) Ans: 12.7 cm²

Using \(x \approx 3.56\), area of square = \((3.56)^2 \approx 12.67\) cm².

Scroll to Top