Home / iGCSE Mathematics (0580) :E2.3 Manipulate algebraic fractions.iGCSE Style Questions Paper 4

iGCSE Mathematics (0580) :E2.3 Manipulate algebraic fractions.iGCSE Style Questions Paper 4

Question

(a) Write as a single fraction in its simplest form
\(\frac{x+3}{x-3}-\frac{x-2}{x+2}\)

(b) \(2^{12}\div 2^{\frac{k}{2}}=32\)
Find the value of \(k\).

(c) Expand and simplify.
\((y+3)(y-4)(2y-1)\)

(d) Make \(x\) the subject of the formula.
\(x=\frac{3+x}{y}\)

▶️ Answer/Explanation
Solution

(a) Ans: \(\frac{10x}{(x-3)(x+2)}\) or \(\frac{10x}{x^2 – x – 6}\)

Combine fractions: \(\frac{(x+3)(x+2)-(x-2)(x-3)}{(x-3)(x+2)}\).

Expand numerators: \(x^2 + 5x + 6 – (x^2 – 5x + 6) = 10x\).

Denominator remains \((x-3)(x+2)\).

(b) Ans: 14

Simplify equation: \(2^{12 – \frac{k}{2}} = 2^5\).

Set exponents equal: \(12 – \frac{k}{2} = 5 \Rightarrow k = 14\).

(c) Ans: \(2y^3 – 3y^2 – 23y + 12\)

First multiply \((y+3)(y-4) = y^2 – y – 12\).

Then multiply by \((2y-1)\): \(2y^3 – y^2 – 24y – y^2 + y + 12\).

Combine like terms for final answer.

(d) Ans: \(x = \frac{3}{y-1}\)

Multiply both sides by \(y\): \(xy = 3 + x\).

Rearrange: \(xy – x = 3 \Rightarrow x(y-1) = 3\).

Divide by \((y-1)\) to isolate \(x\).

Question

(a) \(s = ut + \frac{1}{2}at^{2}\)

Find the value of \(s\) when \(u = 5.2\), \(t = 7\), and \(a = 1.6\).

(b) Simplify.

(i) \(3a – 5b – a + 2b\)

(ii) \(\frac{5}{3x} \times \frac{9x}{20}\)

(c) Solve

(i) \(\frac{15}{x} = -3\)

(ii) \(4(5 – 3x) = 23\)

(d) Simplify.

\((27x^{9})^{\frac{2}{3}}\)

(e) Expand and simplify.

\((3x – 5y)(2x + y)\)

▶️ Answer/Explanation
Solution

(a) Ans: 75.6

Substitute \(u = 5.2\), \(t = 7\), \(a = 1.6\) into \(s = ut + \frac{1}{2}at^2\).

Calculate \(s = (5.2)(7) + \frac{1}{2}(1.6)(49) = 36.4 + 39.2 = 75.6\).

(b)(i) Ans: \(2a – 3b\)

Combine like terms: \(3a – a – 5b + 2b = 2a – 3b\).

(b)(ii) Ans: \(\frac{3}{4}\)

Multiply numerators and denominators: \(\frac{45x}{60x} = \frac{3}{4}\).

(c)(i) Ans: \(-5\)

Multiply both sides by \(x\): \(15 = -3x\), then divide by \(-3\) to get \(x = -5\).

(c)(ii) Ans: \(-\frac{1}{4}\)

Expand: \(20 – 12x = 23\), solve \(-12x = 3\), so \(x = -\frac{1}{4}\).

(d) Ans: \(9x^6\)

Simplify using exponent rules: \(27^{\frac{2}{3}} = 9\) and \(x^{9 \times \frac{2}{3}} = x^6\).

(e) Ans: \(6x^2 – 7xy – 5y^2\)

Expand using distributive property: \(6x^2 + 3xy – 10xy – 5y^2 = 6x^2 – 7xy – 5y^2\).

Scroll to Top