Question
$y$ is inversely proportional to the square root of $(x – 2)$.
When $x = 4.25$, $y = 12$.
Find $x$ when $y = 3$.
▶️ Answer/Explanation
Solution
Ans: $x = 38$
1. Set up inverse proportion: $y = \frac{k}{\sqrt{x-2}}$
2. Find k using given values: $12 = \frac{k}{\sqrt{4.25-2}} ⇒ k = 12×1.5 = 18$
3. For y=3: $3 = \frac{18}{\sqrt{x-2}}$
4. Solve: $\sqrt{x-2} = 6 ⇒ x-2 = 36 ⇒ x = 38$
Question
$y$ is directly proportional to the square root of $(x-3)$.
When $x = 28$, $y = 20$.
Find $y$ when $x = 39$.
▶️ Answer/Explanation
Solution
24
First find constant of proportionality: $y = k\sqrt{x-3}$ → $20 = k\sqrt{25}$ → $k = 4$.
Now find y when x=39: $y = 4\sqrt{39-3} = 4×6 = 24$.