Home / iGCSE Mathematics (0580) :E3.5 Equations of linear graphs iGCSE Style Questions Paper 4

iGCSE Mathematics (0580) :E3.5 Equations of linear graphs iGCSE Style Questions Paper 4

Question

(a) P is the point (1,7). Q is the point (5,-5).

(i) Find $\overrightarrow{PQ}$.

(ii) Show that $\left|\overrightarrow{OP}\right| = \left|\overrightarrow{OQ}\right|$.

(iii) PQ is a chord of a circle with centre O. Calculate the circumference of this circle.

(iv) PQ is the diameter of a different circle with centre R. Find the coordinates of R.

(v) Find the equation of the perpendicular bisector of PQ. Give your answer in the form $y = mx + c$.

(b) The position vector of A is a. The position vector of B is b.

M is a point on AB such that AM:MB = 2:3. Find, in terms of a and b, the position vector of M. Give your answer in its simplest form.

▶️ Answer/Explanation
Solution

(a)(i) Ans: $\begin{pmatrix} 4 \\ -12 \end{pmatrix}$

$\overrightarrow{PQ} = Q – P = (5-1, -5-7) = (4, -12)$.

(a)(ii) Ans: Both magnitudes are $\sqrt{50}$.

For $P(1,7)$, $|\overrightarrow{OP}| = \sqrt{1^2 + 7^2} = \sqrt{50}$.

For $Q(5,-5)$, $|\overrightarrow{OQ}| = \sqrt{5^2 + (-5)^2} = \sqrt{50}$.

(a)(iii) Ans: $44.4$ or $44.42$ to $44.43$.

Circumference $= 2\pi \times \sqrt{50} \approx 44.42$.

(a)(iv) Ans: $(3, 1)$.

Midpoint $R = \left(\frac{1+5}{2}, \frac{7+(-5)}{2}\right) = (3, 1)$.

(a)(v) Ans: $y = \frac{1}{3}x$.

Slope of PQ is $-3$, so perpendicular slope is $\frac{1}{3}$.

Equation through midpoint $(3,1)$: $y – 1 = \frac{1}{3}(x – 3) \Rightarrow y = \frac{1}{3}x$.

(b) Ans: $\frac{3}{5}\mathbf{a} + \frac{2}{5}\mathbf{b}$.

Using section formula, $\overrightarrow{OM} = \frac{3}{5}\mathbf{a} + \frac{2}{5}\mathbf{b}$.

Question

Points \( M(4, 1) \) and \( N(-2, -7) \).

(a) Find the length of \( MN \).

(b) Find the gradient of \( MN \).

(c) Find the equation of the perpendicular bisector of \( MN \).

▶️ Answer/Explanation
Solution

(a) 10

Using distance formula: √[(-2-4)² + (-7-1)²] = √(36+64) = √100 = 10.

(b) 4/3

Gradient = (y₂-y₁)/(x₂-x₁) = (-7-1)/(-2-4) = -8/-6 = 4/3.

(c) y=(-3/4)x-9/4

Midpoint is (1,-3). Perpendicular gradient is -3/4 (negative reciprocal). Equation: y+3 = -3/4(x-1).

Scroll to Top