Home / iGCSE / iGCSE Maths 0580 / Maths (0580) Study Notes / CIE IGCSE Mathematics (0580) Exact trigonometric values Study Notes

CIE IGCSE Mathematics (0580) Exact trigonometric values Study Notes

CIE IGCSE Mathematics (0580) Exact trigonometric values Study Notes - New Syllabus

CIE IGCSE Mathematics (0580) Exact trigonometric values Study Notes

LEARNING OBJECTIVE

  • Exact Trigonometric Values for sin/cos/tan

Key Concepts: 

  • Exact Trigonometric Values

CIE iGCSE Maths (0580)  Study Notes – All topics

Exact Trigonometric Values

Exact Trigonometric Values

You are expected to remember the exact values of \( \sin x \) and \( \cos x \) for the special angles:

\( x = 0^\circ, \; 30^\circ, \; 45^\circ, \; 60^\circ, \; 90^\circ \)

Exact Trigonometric Values Table:

Angle\( \sin x \)\( \cos x \)
\( 0^\circ \)01
\( 30^\circ \)\( \frac{1}{2} \)\( \frac{\sqrt{3}}{2} \)
\( 45^\circ \)\( \frac{\sqrt{2}}{2} \)\( \frac{\sqrt{2}}{2} \)
\( 60^\circ \)\( \frac{\sqrt{3}}{2} \)\( \frac{1}{2} \)
\( 90^\circ \)10

These values should be memorised – they often appear in non-calculator exam questions.

Example:

Without using a calculator, find the exact value of:

  • \( \sin 30^\circ \)
  • \( \cos 60^\circ \)
▶️ Answer/Explanation

\( \sin 30^\circ = \frac{1}{2} \), from the table

\( \cos 60^\circ = \frac{1}{2} \), from the table

Example:

Find the exact value of \( \cos^2 45^\circ + \sin^2 45^\circ \).

▶️ Answer/Explanation

\( \cos 45^\circ = \frac{\sqrt{2}}{2} \), \( \sin 45^\circ = \frac{\sqrt{2}}{2} \)

\( \cos^2 45^\circ + \sin^2 45^\circ = \left( \frac{\sqrt{2}}{2} \right)^2 + \left( \frac{\sqrt{2}}{2} \right)^2 = \frac{1}{2} + \frac{1}{2} = \boxed{1} \)

Note: This confirms the identity \( \cos^2 x + \sin^2 x = 1 \)

Exact Values of \( \tan x \) for Special Angles

You should know the exact values of \( \tan x \) for:

\( x = 0^\circ, \; 30^\circ, \; 45^\circ, \; 60^\circ \)

Exact Tangent Values Table:

Angle\( \tan x \)
\( 0^\circ \)0
\( 30^\circ \)\( \frac{1}{\sqrt{3}} \)
\( 45^\circ \)1
\( 60^\circ \)\( \sqrt{3} \)

These values can be remembered using:

\( \tan x = \frac{\sin x}{\cos x} \)

Example:

Find the exact value of \( \tan 45^\circ \).

▶️ Answer/Explanation

From the table: \( \tan 45^\circ = \boxed{1} \)

Example:

Without using a calculator, evaluate \( \frac{\tan 30^\circ}{\tan 60^\circ} \)

▶️ Answer/Explanation

\( \tan 30^\circ = \frac{1}{\sqrt{3}}, \quad \tan 60^\circ = \sqrt{3} \)

\( \frac{\tan 30^\circ}{\tan 60^\circ} = \frac{\frac{1}{\sqrt{3}}}{\sqrt{3}} = \frac{1}{\sqrt{3} \cdot \sqrt{3}} = \boxed{\frac{1}{3}} \)

Scroll to Top