Home / iGCSE / iGCSE Maths 0580 / Maths (0580) Study Notes / CIE IGCSE Mathematics (0580) Functions Study Notes

CIE IGCSE Mathematics (0580) Functions Study Notes

CIE IGCSE Mathematics (0580) Functions Study Notes - New Syllabus

CIE IGCSE Mathematics (0580) Functions Study Notes

LEARNING OBJECTIVE

  • Understanding Functions, Domain and Range

Key Concepts: 

  • Functions, Domain and Range
  • Inverse Functions
  • Composite Functions

CIE iGCSE Maths (0580)  Study Notes – All topics

Functions, Domain and Range

Functions, Domain and Range

A function is a rule that assigns exactly one output value to each input value. In mathematics, this relationship is often written as:

$ f(x) = \text{some expression in } x $

The letter \( f \) is the name of the function, and \( x \) is the input variable. The output is denoted by \( f(x) \). This is called function notation.

Domain

The domain of a function is the set of all possible input values (x-values) for which the function is defined.

  • Example: The function \( f(x) = \frac{1}{x – 2} \) is undefined when \( x = 2 \), so the domain is all real numbers except 2.

Range

The range of a function is the set of all possible output values (f(x)) the function can take based on the domain.

  • Example: For \( f(x) = x^2 \), where \( x \in \mathbb{R} \), the output is always \( \geq 0 \), so the range is \( f(x) \geq 0 \).

 

Function Notation

If \( f(x) = 2x + 1 \), then to evaluate the function at \( x = 4 \), substitute:

$ f(4) = 2(4) + 1 = 9 $

Example:

Let \( f(x) = 3x^2 – 5 \). Find:

  • \( f(2) \)
  • \( f(-1) \)
▶️ Answer/Explanation

\( f(2) = 3(2)^2 – 5 = 3(4) – 5 = 12 – 5 = 7 \)

\( f(-1) = 3(-1)^2 – 5 = 3(1) – 5 = 3 – 5 = -2 \)

Answers: \( f(2) = 7 \), \( f(-1) = -2 \)

Example:

Given \( f(x) = \frac{4}{x + 3} \), state the domain and evaluate \( f(-2) \).

▶️ Answer/Explanation

Domain: Denominator cannot be 0 → \( x \neq -3 \)

So domain is all real numbers except \( x = -3 \)

\( f(-2) = \frac{4}{-2 + 3} = \frac{4}{1} = 4 \)

Inverse Functions

Inverse Functions

An inverse function reverses the effect of a function. If a function takes an input \( x \) and gives an output \( y \), the inverse function takes \( y \) and gives back the original input \( x \).

If \( f(x) \) is a function, its inverse is written as \( f^{-1}(x) \). The key idea is:

$ f(f^{-1}(x)) = x \quad \text{and} \quad f^{-1}(f(x)) = x $

Steps to find the inverse of a function:

  1. Start with the equation \( y = f(x) \).
  2. Swap \( x \) and \( y \).
  3. Make \( y \) the subject again (solve for \( y \)).
  4. Replace \( y \) with \( f^{-1}(x) \).

Example:

Find the inverse of the function \( f(x) = 2x + 5 \)

▶️ Answer/Explanation

Step 1: Write \( y = 2x + 5 \)

Step 2: Swap x and y → \( x = 2y + 5 \)

Step 3: Solve for y:

\( x – 5 = 2y \Rightarrow y = \frac{x – 5}{2} \)

Step 4: Replace y with \( f^{-1}(x) \):

\( f^{-1}(x) = \frac{x – 5}{2} \)

Example:

Find the inverse of \( f(x) = \frac{x – 1}{3} \)

▶️ Answer/Explanation

Step 1: Write \( y = \frac{x – 1}{3} \)

Step 2: Swap x and y → \( x = \frac{y – 1}{3} \)

Step 3: Solve for y:

\( 3x = y – 1 \Rightarrow y = 3x + 1 \)

Step 4: Replace y with \( f^{-1}(x) \):

\( f^{-1}(x) = 3x + 1 \)

Composite Functions

Composite Functions

A composite function is formed when one function is applied after another. If you have two functions \( f(x) \) and \( g(x) \), then the composite function \( gf(x) \) means:

$ (gf)(x) = g(f(x)) $

This means: first apply the function \( f \), then apply \( g \) to the result of \( f(x) \).

Steps to form a composite function:

  1. Start with the inside function \( f(x) \).
  2. Substitute \( f(x) \) into the outer function \( g(x) \).
  3. Simplify the resulting expression.

Example:

If \( f(x) = 2x + 3 \) and \( g(x) = x^2 \), find \( gf(x) \).

▶️ Answer/Explanation

Step 1: Find \( f(x) = 2x + 3 \)

Step 2: Substitute into \( g(x) = x^2 \):

\( gf(x) = g(f(x)) = (2x + 3)^2 \)

Step 3: Expand the square:

\( (2x + 3)^2 = 4x^2 + 12x + 9 \)

Answer: \( gf(x) = 4x^2 + 12x + 9 \)

Example:

If \( f(x) = \dfrac{3}{x + 2} \) and \( g(x) = (3x + 5)^2 \), find \( fg(x) \).

▶️ Answer/Explanation

Step 1: Find the expression for \( g(x) \):

$ g(x) = (3x + 5)^2 $

Step 2: Use this as input for \( f(x) \). That is, replace x in \( f(x) \) with \( g(x) \):

$ fg(x) = f(g(x)) = \dfrac{3}{(3x + 5)^2 + 2} $

Step 3: Final simplified expression:

$ fg(x) = \dfrac{3}{(3x + 5)^2 + 2} $

Scroll to Top