CIE IGCSE Mathematics (0580) Units of measure Study Notes - New Syllabus
CIE IGCSE Mathematics (0580) Units of measure Study Notes
LEARNING OBJECTIVE
- Units of Measure and Conversions
Key Concepts:
- Units of Measure and Conversions
Units of Measure and Conversions
Units of Measure and Conversions
Metric units are used to measure length, area, volume, capacity, and mass.
1. Length Units
- 1 kilometre (km) = 1000 metres (m)
- 1 metre (m) = 100 centimetres (cm)
- 1 centimetre (cm) = 10 millimetres (mm)
Conversions: \( 1 \text{ km} = 1000 \text{ m}, \quad 1 \text{ m} = 100 \text{ cm}, \quad 1 \text{ cm} = 10 \text{ mm} \)
2. Area Units
- 1 m² = 10,000 cm²
- 1 cm² = 100 mm²
- 1 km² = 1,000,000 m²
Conversions: \( 1 \text{ m}^2 = 10,000 \text{ cm}^2, \quad 1 \text{ cm}^2 = 100 \text{ mm}^2, \quad 1 \text{ km}^2 = 1,000,000 \text{ m}^2 \)
3. Volume Units
- 1 m³ = 1,000,000 cm³
- 1 cm³ = 1000 mm³
Conversions: \( 1 \text{ m}^3 = 1,000,000 \text{ cm}^3, \quad 1 \text{ cm}^3 = 1000 \text{ mm}^3 \)
4. Capacity (Liquid Volume)
- 1 litre (L) = 1000 millilitres (ml)
- 1 cm³ = 1 ml
- 1000 cm³ = 1 L
Conversions: \( 1 \text{ L} = 1000 \text{ ml}, \quad 1 \text{ cm}^3 = 1 \text{ ml} \)
5. Mass Units
- 1 kilogram (kg) = 1000 grams (g)
- 1 gram (g) = 1000 milligrams (mg)
Conversions: \( 1 \text{ kg} = 1000 \text{ g}, \quad 1 \text{ g} = 1000 \text{ mg} \)
Tips for Conversion:
- To convert to a larger unit, divide.
- To convert to a smaller unit, multiply.
- Always write the correct unit and check if the final value makes sense.
Example:
A container has a volume of 2.5 m³. Convert this to litres.
▶️ Answer/Explanation
Since \( 1 \text{ m}^3 = 1000 \text{ L} \),
\( 2.5 \times 1000 = 2500 \)
Answer: 2500 L
Example:
A field has an area of 2.3 hectares. Convert this into square metres.
▶️ Answer/Explanation
1 hectare = 10,000 m²
\( 2.3 \times 10,000 = 23,000 \)
Answer: 23,000 m²
Conversions Between Area Units
Area units increase by powers of 100 (not 10), because area involves length × width.
- \( 1 \text{ m}^2 = 10,000 \text{ cm}^2 \)
- \( 1 \text{ cm}^2 = 100 \text{ mm}^2 \)
- \( 1 \text{ km}^2 = 1,000,000 \text{ m}^2 \)
Example:
Convert \( 2.5 \text{ m}^2 \) to \( \text{cm}^2 \).
▶️ Answer/Explanation
\( 1 \text{ m}^2 = 10,000 \text{ cm}^2 \)
\( 2.5 \times 10,000 = 25,000 \)
Answer: \( 25,000 \text{ cm}^2 \)
Example:
Convert \( 420,000 \text{ cm}^2 \) to \( \text{m}^2 \).
▶️ Answer/Explanation
\( 1 \text{ m}^2 = 10,000 \text{ cm}^2 \)
\( 420,000 \div 10,000 = 42 \)
Answer: \( 42 \text{ m}^2 \)
Conversions Between Volume and Capacity
Volume and capacity are directly related: \( 1 \text{ cm}^3 = 1 \text{ ml}, \quad 1000 \text{ cm}^3 = 1 \text{ litre}, \quad 1 \text{ m}^3 = 1000 \text{ litres} \)
- \( 1 \text{ litre} = 1000 \text{ cm}^3 \)
- \( 1 \text{ m}^3 = 1000 \text{ litres} \)
- \( 1 \text{ cm}^3 = 1 \text{ ml} \)
Example:
Convert \( 3.4 \text{ m}^3 \) into litres.
▶️ Answer/Explanation
\( 1 \text{ m}^3 = 1000 \text{ litres} \)
\( 3.4 \times 1000 = 3400 \)
Answer: \( 3400 \text{ litres} \)
Example:
Convert \( 500 \text{ cm}^3 \) into litres.
▶️ Answer/Explanation
\( 1000 \text{ cm}^3 = 1 \text{ litre} \)
\( 500 \div 1000 = 0.5 \)
Answer: \( 0.5 \text{ litres} \)
Example:
A bottle holds 1.5 litres of water. Express this volume in cm³.
▶️ Answer/Explanation
\( 1 \text{ litre} = 1000 \text{ cm}^3 \)
\( 1.5 \times 1000 = 1500 \)
Answer: \( 1500 \text{ cm}^3 \)