Home / iGCSE / iGCSE Maths 0580 / Maths (0580) Study Notes / CIE IGCSE Mathematics (0580) Vectors in two dimensions Study Notes

CIE IGCSE Mathematics (0580) Vectors in two dimensions Study Notes

CIE IGCSE Mathematics (0580) Vectors in two dimensions Study Notes - New Syllabus

CIE IGCSE Mathematics (0580) Vectors in two dimensions Study Notes

LEARNING OBJECTIVE

  • Vectors in two dimensions

Key Concepts: 

  •  Describing a Translation Using a Vector

  • Adding and Subtracting Vectors

  • Multiplying a Vector by a Scalar

CIE iGCSE Maths (0580)  Study Notes – All topics

 Describing a Translation Using a Vector

 Describing a Translation Using a Vector

A translation is a type of transformation that moves a shape from one position to another without rotating, resizing, or changing its orientation.

A translation is described using a vector, which shows how far and in what direction each point moves.

Vector Notation:

A translation of

\( \begin{pmatrix} x \\ y \end{pmatrix} \)

means:

  • Move x units right (if positive) or left (if negative)
  • Move y units up (if positive) or down (if negative)

You may also see translations written as \( \vec{AB} \) or simply vector \( \vec{a} \) if points A and B define the movement.

Example:

A point moves by the vector \( \begin{pmatrix} 4 \\ -2 \end{pmatrix} \). Describe the movement.

▶️ Answer/Explanation

The point moves:

  • 4 units to the right (positive x)
  • 2 units down (negative y)

This is a translation described by the vector \( \begin{pmatrix} 4 \\ -2 \end{pmatrix} \).

Example:

Point A is at (3, 5) and is translated to point B at (8, 2). Write the translation vector \( \vec{AB} \).

▶️ Answer/Explanation

To find vector \( \vec{AB} \), subtract coordinates:

\( \vec{AB} = \begin{pmatrix} 8 – 3 \\ 2 – 5 \end{pmatrix} = \begin{pmatrix} 5 \\ -3 \end{pmatrix} \)

So the translation moves 5 units right and 3 units down.

Adding and Subtracting Vectors

Adding and Subtracting Vectors

Vectors can be added or subtracted by combining their components.

Addition:

To add two vectors:

\( \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} a + c \\ b + d \end{pmatrix} \)

Subtraction:

To subtract two vectors:

\( \begin{pmatrix} a \\ b \end{pmatrix} – \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} a – c \\ b – d \end{pmatrix} \)

Example:

Add: \( \begin{pmatrix} 3 \\ 4 \end{pmatrix} + \begin{pmatrix} 2 \\ -1 \end{pmatrix} \)

▶️ Answer/Explanation

Add the top and bottom components separately:

\( \begin{pmatrix} 3 + 2 \\ 4 + (-1) \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \end{pmatrix} \)

Example:

Subtract: \( \begin{pmatrix} 6 \\ -2 \end{pmatrix} – \begin{pmatrix} 4 \\ 3 \end{pmatrix} \)

▶️ Answer/Explanation

Subtract the corresponding components:

\( \begin{pmatrix} 6 – 4 \\ -2 – 3 \end{pmatrix} = \begin{pmatrix} 2 \\ -5 \end{pmatrix} \)

Multiplying a Vector by a Scalar

Multiplying a Vector by a Scalar

To multiply a vector by a scalar means to scale the vector’s magnitude without changing its direction (unless the scalar is negative, which reverses the direction).

Rule:

If \( k \) is a scalar and \( \vec{v} = \begin{pmatrix} a \\ b \end{pmatrix} \), then:

\( k \cdot \vec{v} = k \cdot \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} ka \\ kb \end{pmatrix} \)

  • If \( k > 0 \), the vector keeps the same direction.
  • If \( k < 0 \), the vector reverses direction.
  • If \( |k| > 1 \), the vector gets longer. If \( 0 < |k| < 1 \), the vector becomes shorter.

Example:

Find \( 3 \cdot \begin{pmatrix} 2 \\ -1 \end{pmatrix} \)

▶️ Answer/Explanation

Multiply each component by 3:

\( \begin{pmatrix} 3 \cdot 2 \\ 3 \cdot (-1) \end{pmatrix} = \begin{pmatrix} 6 \\ -3 \end{pmatrix} \)

Example:

Find \( -2 \cdot \begin{pmatrix} 4 \\ 5 \end{pmatrix} \)

▶️ Answer/Explanation

Multiply each component by -2:

\( \begin{pmatrix} -2 \cdot 4 \\ -2 \cdot 5 \end{pmatrix} = \begin{pmatrix} -8 \\ -10 \end{pmatrix} \)

The vector has the same length as \( \begin{pmatrix} 4 \\ 5 \end{pmatrix} \) scaled by 2, but its direction is reversed.

Scroll to Top