Home / Mock Exams AP Calculus AB – MCQ Set 1

Mock Exams AP Calculus AB – MCQ Set 1

Question

$\lim _{x \rightarrow \infty} \frac{20 x^2-13 x+5}{5-4 x^3}$ is

(A) $-5$

(B) 0

(C) 1

(D) $\infty$

▶️Answer/Explanation

Ans:B

Use the Rational Function Theorem 

A rational function is of the form
$
f(x)=\frac{P(x)}{Q(x)}
$
where $P(x)$ and $Q(x)$ are polynomials. The domain of $f$ is the set of all reals for which $Q(x) \neq 0$.

Question

 $\lim _{h \rightarrow 0} \frac{\ln (2+h)-\ln 2}{h}$ is

(A) $\ln 2$

(B) $\frac{1}{2}$

(C) $\frac{1}{\ln 2}$

(D) $\infty$

▶️Answer/Explanation

Ans:B

 Note that $\lim _{h \rightarrow 0} \frac{\ln (2+h)-\ln 2}{h}=f^{\prime}(2)$, where $f(x)=\ln x$.

Question

 If $y=e^{-x^2}$, then $y^{\prime \prime}(0)$ equals
(A) 2

(B) 1

(C) 0

(D) $-2$

▶️Answer/Explanation

Ans:D

Since $y^{\prime}=-2 x e^{-x^2}$, therefore $y^{\prime \prime}=-2\left(x \cdot e^{-x^2} \cdot(-2 x)+e^{-x^2}\right)$. Replace $x$ by 0 .

Question

Use the following table, which shows the values of the differentiable functions $f$ and $g$.

The average rate of change of function $f$ on $[1,4]$ is
(A) $7 / 6$

(B) $4 / 3$

(C) $15 / 8$

(D) $15 / 4$

▶️Answer/Explanation

Ans:B

 $\frac{f(4)-f(1)}{4-1}=\frac{6-2}{4-1}=\frac{4}{3}$

Question

Use the following table, which shows the values of the differentiable functions $f$ and $g$.

If $h(x)=g(f(x))$ then $h^{\prime}(3)=$

(A) $1 / 2$

(B) 1

(C) 4

(D) 6

▶️Answer/Explanation

Ans:B

 $h^{\prime}(3)=g^{\prime}(f(3)) \cdot f^{\prime}(3)=g^{\prime}(4) \cdot f^{\prime}(3)=\frac{1}{2} \cdot 2$

Scroll to Top