Home / IIT- JEE / IIT-JEE Main / IIT JEE Main Maths -Unit 1 -Functions – Exam Style Questions

IIT JEE Main Maths -Unit 1 -Functions - Exam Style Questions- New Syllabus

Question 
Let \( f(x) \) be a real differentiable function such that \( f(0) = 1 \) and \( f(x + y) = f(x)f'(y) + f'(x)f(y) \) for all \( x, y \in \mathbb{R} \). Then \( \sum_{n=1}^{100} \log_e f(n) \) is equal to :
(1) 2384
(2) 2525
(3) 5220
(4) 2406
▶️ Answer/Explanation

Ans. (2)

Sol. \( f(x + y) = f(x)f'(y) + f'(x)f(y) \)

Put \( x = y = 0 \)

\( f(0) = f(0)f'(0) + f'(0)f(0) \)

\( f'(0) = \frac{1}{2} \)

Put \( y = 0 \)

\( f(x) = f(x)f'(0) + f'(x)f(0) \)

\( f(x) = f(x) \times \frac{1}{2} + f'(x) \times 1 \)

\( f'(x) = \frac{f(x)}{2} \)

\( \frac{dy}{y} = \frac{dx}{2} \Rightarrow \int \frac{dy}{y} = \int \frac{dx}{2} \)

\( \Rightarrow \ln y = \frac{x}{2} + c \)

\( \because f(0) = 1 \Rightarrow c = 0 \)

\( \ln y = \frac{x}{2} \Rightarrow f(x) = e^{x/2} \)

\( \ln f(n) = \frac{n}{2} \)

\( \sum_{n=1}^{100} \ln f(n) = \sum_{n=1}^{100} \frac{n}{2} = \frac{1}{2} \times \frac{100 \times 101}{2} = \frac{5050}{2} = 2525 \)

Question 
Let $A = \{1, 2, 3, 4\}$ and $B = \{1, 4, 9, 16\}$. Then the number of many-one functions $f : A \to B$ such that $1 \in f(A)$ is equal to :
(1) 127
(2) 151
(3) 163
(4) 139
▶ Answer/Explanation
Ans. (2)
Sol. Total = $4^4$
One-one = $4!$
Many-one = $256 – 24 = 232$
Many-one which $1 \notin f(A)$
= $3.3.3.3 = 81$
232 – 81 = 151
Question 

Let \(f(x) = \log_e x\) and \(g(x) = \frac{x^4 – 2x^3 + 3x^2 – 2x + 2}{2x^2 – 2x + 1}\). Then the domain of \(fog\) is

(1) \(\mathbb{R}\)
(2) \((0, \infty)\)
(3) \([0, \infty)\)
(4) \([1, \infty)\)

▶️ Answer/Explanation

Ans. (1)

Sol. \(f(x) = \ln x\)
\(g(x) = \frac{x^4 – 2x^3 + 3x^2 – 2x + 2}{2x^2 – 2x + 1}\)
\(D_g \in \mathbb{R}\)
\(D_f \in (0, \infty)\)
For \(D_{fog} \Rightarrow g(x) > 0\)
\(\Rightarrow x^4 – 2x^3 + 3x^2 – 2x + 2 > 0\)
Clearly \(x < 0\) satisfies which are included in option (1) only.

Scroll to Top