IIT JEE Main Maths -Unit 10 -Circle, Conic Sections- Exam Style Questions- New Syllabus
▶️ Answer/Explanation
▶ Answer/Explanation
\(S_1: (x + 2)^2 + (y – 2)^2 = 2^2\)
\(S_2: (x – 2)^2 + (y – 5)^2 = r^2\)
Both circles intersect at two points \(\Rightarrow |r – 2| < 5 < 2 + r\) \(\Rightarrow 3 < r < 7\)
\(r \in (3, 7)\)
\(\alpha = 3, \ \beta = 7\)
\(3\beta – 2\alpha = 15\)
(1) \( \frac{25}{6} \)
(2) \( \frac{24}{5} \)
(3) \( \frac{288}{5} \)
(4) \( \frac{144}{5} \)
▶️ Answer/Explanation
Ans. (3)
Sol.
\( be = 13, b = 5 \)
\( a^2 = b^2 (e^2 – 1) \)
\( = b^2 e^2 – b^2 \)
\( = 169 – 25 = 144 \)
\( LR = \frac{2a^2}{b} = \frac{2 \times 144}{5} = \frac{288}{5} \)
(1) \( 6\pi – 8 \)
(2) \( 3\pi – 8 \)
(3) \( 6\pi – 16 \)
(4) \( 3\pi + 8 \)
▶️ Answer/Explanation
Ans. (3)
Sol.
\( y^2 = 2\sqrt{3} x \)
\( (x – 2)^2 + y^2 = 2\sqrt{3} x \)
\( A = 2 \int_{0}^{2/\sqrt{3}} \left( \sqrt{12 – (x – 2)^2} – \sqrt{2\sqrt{3} x} \right) \, dx \)
\( = \pi \times \left[ x – 2\sqrt{3} \right]_{0}^{2/\sqrt{3}} – \left[ 2\sqrt{2\sqrt{3} x} \right]_{0}^{2/\sqrt{3}} \)
\( = 6\pi – 16 \)
(1) $\frac{263\sqrt{3}}{8}$
(2) $17\sqrt{3}$
(3) $\frac{343\sqrt{3}}{8}$
(4) $\frac{34\sqrt{3}}{3}$
▶ Answer/Explanation
Sol. $S$ $O$ $N$ $Q$ $M$

$(4, 4\sqrt{3})$ lies on $y^2 = 4ax$ $\Rightarrow 48 = 4a.4$
$4a = 12$ $\Rightarrow y^2 = 12x$ is equation of parabola
Now, parameter of $P$ is $t_1 = 2\sqrt{3}$
$\Rightarrow$ Parameters of $Q$ is $t_2 = -\frac{\sqrt{3}}{2}$ $\Rightarrow Q (\frac{9}{4}, -3\sqrt{3})$
Area of trapezium $PQNM$
= $\frac{1}{2} MN.(PM + QN)$
= $\frac{1}{2} MN.(PS + QS)$
= $\frac{1}{2} MN.PQ$
= $\frac{1}{2} \frac{49}{4} \sqrt{3}.7\sqrt{3}$
($\frac{343}{2} \frac{1}{4} \frac{1}{8}$ = $\frac{343\sqrt{3}}{8}$ = 3 )
(1) $\frac{8}{3}$
(2) $\frac{4}{3}$
(3) 5
(4) 8
▶ Answer/Explanation
Sol.

$y = x^2$, $y^2 = -8x$
\(\frac{16ab}{3} = \frac{16 \times \frac{1}{4} \times 2}{3} = \frac{8}{3}\)
4. If the line \( 3x – 2y + 12 = 0 \) intersects the parabola \( 4y = 3x^2 \) at the points A and B, then at the vertex of the parabola, the line segment AB subtends an angle equal to
(1) \( \tan^{-1}\!\left(\frac{1}{9}\right) \) \quad
(2) \( \pi – \tan^{-1}\!\left(\frac{3}{2}\right) \) \quad
(3) \( \tan^{-1}\!\left(\frac{1}{4}\right) \) \quad
(4) \( \tan^{-1}\!\left(\frac{1}{9/7}\right) \)
▶️ Answer/Explanation
Ans. (4)
Sol.
\( 3x – 2y + 12 = 0 \)
\( 4y = 3x^2 \)
\( \therefore 2(3x + 12) = 3x^2 \)
\( \Rightarrow x^2 – 2x – 8 = 0 \)
\( \Rightarrow x = -2, 4 \)
\( m_{OA} = -\frac{3}{2}, \; m_{OB} = 3 \)
\( \tan\theta = \left| \frac{3 – (-\frac{3}{2})}{1 + (-\frac{3}{2})(3)} \right| = \frac{9}{7} \)
\( \therefore \theta = \tan^{-1}\!\left(\frac{9}{7}\right) \)
▶️ Answer/Explanation
Ans. (19)
Sol.
\( x – y + 1 = 0; \; p = r \)
\( \left| \frac{\alpha – 0 + 1}{\sqrt{2}} \right| = r \Rightarrow (\alpha + 1)^2 = 2r^2 \) ….(1)
Now
\( \left( \frac{-3\alpha + 0 – 1}{\sqrt{9 + 4}} \right)^2 + \left( \frac{2}{\sqrt{13}} \right)^2 = r^2 \)
\( \Rightarrow (3\alpha + 1)^2 + 4 = 13r^2 \) ….(2)
(1) & (2) \( \Rightarrow (3\alpha + 1)^2 + 4 = 13 \cdot \frac{(\alpha + 1)^2}{2} \)
\( \Rightarrow 18\alpha^2 + 12\alpha + 2 + 8 = 13\alpha^2 + 26\alpha + 13 \)
\( \Rightarrow 5\alpha^2 – 14\alpha – 3 = 0 \)
\( \Rightarrow 5\alpha^2 – 15\alpha + \alpha – 3 = 0 \Rightarrow 5\alpha(\alpha – 3) + (\alpha – 3) = 0 \)
\( \Rightarrow \alpha = -\frac{1}{5}, \, 3 \)
\( \therefore r = 2\sqrt{2} \)
Now \( \alpha e = 3 \) and \( 2\alpha = 4\sqrt{2} \)
\( \alpha^2 e^2 = 9 \Rightarrow \alpha e = 2\sqrt{2} \Rightarrow \alpha^2 = 8 \)
\( \alpha^2 \left( 1 + \frac{\beta^2}{\alpha^2} \right) = 9 \)
\( \alpha^2 + \beta^2 = 9 \)
\( \beta^2 = 1 \)
\( \therefore 2\alpha^2 + 3\beta^2 = 2(8) + 3(1) = 19 \)