IIT JEE Main Maths -Unit 11 -Lines and Skew lines- Exam Style Questions- New Syllabus
▶️ Answer/Explanation

▶️ Answer/Explanation
Ans. (216)
Sol. Point \( B \)
\( (3\lambda + 1, -\lambda + 1, -1) \equiv (2\mu + 2, 0, \alpha \mu – 4) \)
\( 3\lambda + 1 = 2\mu + 2 \)
\( -\lambda + 1 = 0 \)
\( -1 = \alpha \mu – 4 \)
\( \lambda = 1, \mu = 1, \alpha = 3 \)
\( B(4, 0, -1) \)
Let Point \( P \) is \( (2\delta + 2, 0, 3\delta – 4) \)
Dr’s of \( AP < 2\delta + 1, -1, 3\delta – 3 > \)
\( AP \perp L_2 \Rightarrow \delta = \frac{7}{13} \)
\( P\left( \frac{40}{13}, 0, -\frac{31}{13} \right) \)
\( (PB)^2 = 26 \times 3 \times \left( \frac{144}{169} + \frac{324}{169} \right) = 216 \)
(1) 6
(2) $5\sqrt{2}$
(3) $3\sqrt{5}$
(4) $4\sqrt{3}$
▶ Answer/Explanation
Sol.

$\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{-2}$ (let)
$(2\lambda + 1, -\lambda – 2, 2\lambda – 3)$
$PA.n = 0$
$\Rightarrow (2\lambda – 1)2 + (-\lambda + 8)(-1) + (2\lambda – 4)2 = 0$
$\Rightarrow 4\lambda – 2 + \lambda – 8 + 4\lambda – 8 = 0$
$\Rightarrow 9\lambda – 18 = 0$ $\Rightarrow \lambda = 2$
$\therefore A(5, -4, 1)$
$\therefore AP = \sqrt{3^2 + 6^2 + 0^2} = \sqrt{45} = 3\sqrt{5}$
9. Let P be the foot of the perpendicular from the point Q(10, –3, –1) on the line
\( \frac{x – 3}{7} = \frac{y – 2}{-1} = \frac{z – 1}{-2} \).
Then the area of the right angled triangle PQR, where R is the point (3, –2, 1), is
(1) \( 9\sqrt{15} \)
(2) $30 $
(3) \( 8\sqrt{15} \)
(4) \( 3\sqrt{30} \)
▶️ Answer/Explanation
Ans. (4)
Sol.
Let point on line be \( P(7\lambda + 3, -\lambda + 2, -2\lambda + 1) \).
Direction ratios of \( QP \Rightarrow (7\lambda – 7, -\lambda + 5, -2\lambda – 2) \)
Since \( QP \perp \text{line} \Rightarrow (7\lambda – 7)(7) + (-\lambda + 5)(-1) + (-2\lambda – 2)(-2) = 0 \)
\( 54\lambda – 54 = 0 \Rightarrow \lambda = 1 \)
\( \therefore P = (10, 1, -3) \)
\( \overrightarrow{PQ} = 4\hat{j} + 2\hat{k} \), \( \overrightarrow{PR} = -7\hat{i} – 3\hat{j} + 4\hat{k} \)
Area \( = \frac{1}{2} |\overrightarrow{PQ} \times \overrightarrow{PR}| = \frac{1}{2} \sqrt{(0)^2 + (4)^2 + (2)^2} = 3\sqrt{30} \)