IIT JEE Main Maths -Unit 12 - Vectors and Scalars- Exam Style Questions- New Syllabus
▶️ Answer/Explanation
Ans. (16)
Sol. \( \mathbf{c} = \frac{(\mathbf{b} \cdot \mathbf{a})}{|\mathbf{a}|^2} \mathbf{a} \)
\( = \frac{(\lambda + 8)}{9} (\hat{i} + 2 \hat{j} + 2 \hat{k}) \)
\( |\mathbf{a} + \mathbf{c}| = 7 \Rightarrow \lambda = 4 \)
Area of parallelogram = \( |\mathbf{b} \times \mathbf{c}| = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{4}{3} & \frac{8}{3} & \frac{8}{3} \\ 4 & 0 & 4 \end{vmatrix} = 16 \)
(1) 3
(2) 2
(3) 1
(4) 0
▶ Answer/Explanation
Ans. (4)
Sol.
\(\hat{a}.\hat{b} = \frac{1}{2}\)
\(\text{Now } (\lambda\hat{a} + 2\hat{b}).(3\hat{a} – \lambda\hat{b}) = 0\)
\(3\lambda\hat{a}.\hat{a} – \lambda^2\hat{a}.\hat{b} + 6\hat{a}.\hat{b} – 2\lambda\hat{b}.\hat{b} = 0\)
\(3\lambda – \frac{\lambda^2}{2} + 3 – 2\lambda = 0\)
\(\lambda^2 – 2\lambda – 6 = 0\)
\(\lambda = 1 \pm \sqrt{7}\)
\(\Rightarrow \text{number of values} = 0\)
Let the arc AC of a circle subtend a right angle at the centre O. If the point B on the arc AC divides the arc AC such that
\( \frac{\text{length of arc AB}}{\text{length of arc BC}} = \frac{1}{5} \),
and \( \overrightarrow{OC} = \alpha \overrightarrow{OA} + \beta \overrightarrow{OB} \),
then \( (2\alpha – \beta) = \)
(1) \( 2\sqrt{3} – 3 \)
(2) \( 2\sqrt{3} \)
(3) \( 5\sqrt{3} \)
(4) \( 2 + \sqrt{3} \)
▶️ Answer/Explanation
Ans. (1)
Sol.
Let \( \angle AOB = 15^\circ \), \( \angle BOC = 75^\circ \).
Using vector relations:
\( \overrightarrow{OC} = \alpha \overrightarrow{OA} + \beta \overrightarrow{OB} \)
\( \overrightarrow{a} \cdot \overrightarrow{c} = \alpha a^2 + \beta (\overrightarrow{a} \cdot \overrightarrow{b}) \Rightarrow 0 = \alpha + \beta \cos 15^\circ \) …(1)
\( \overrightarrow{b} \cdot \overrightarrow{c} = \alpha (\overrightarrow{b} \cdot \overrightarrow{a}) + \beta b^2 \Rightarrow \cos 75^\circ = \alpha \cos 15^\circ + \beta \) …(2)
From (1) and (2),
\( \cos 75^\circ = -\beta \cos^2 15^\circ + \beta \)
\( \Rightarrow \beta = \frac{\sin 15^\circ}{\sin 15^\circ \cos 15^\circ} = 2 – \sqrt{3} \)
\( \alpha = \frac{3 – \sqrt{3}}{2} \)
\( \therefore (2\alpha – \beta) = 2\sqrt{3} – 3 \)
Let the position vectors of the vertices A, B and C of a tetrahedron ABCD be \(\hat{i} + 2\hat{j} + \hat{k}\), \(\hat{i} + 3\hat{j} – 2\hat{k}\) and \(2\hat{i} – \hat{j} + \hat{k}\) respectively. The altitude from the vertex D to the opposite face ABC meets the median line segment through A of the triangle ABC at the point E. If the length of AD is \(\frac{\sqrt{110}}{3}\) and the volume of the tetrahedron is \(\frac{\sqrt{805}}{6\sqrt{2}}\), then the position vector of E is
(1) \(\frac{1}{2} (\hat{i} + 4\hat{j} + 7\hat{k})\)
(2) \(\frac{1}{12} (7\hat{i} + 4\hat{j} – 3\hat{k})\)
(3) \(\frac{1}{6} (12\hat{i} + 12\hat{j} + \hat{k})\)
(4) \(\frac{1}{6} (7\hat{i} + 12\hat{j} + \hat{k})\)
▶️ Answer/Explanation
Ans. (4)
Sol.
$\text{Area of }\triangle ABC = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}$
$= \frac{1}{2} |\hat{i} + 3\hat{j} + \hat{k}| = \frac{1}{2} \sqrt{35}$
$\text{volume of tetrahedron}$
$= \frac{1}{3} \times \text{Base area} \times h = \frac{\sqrt{805}}{6\sqrt{2}}$
$\frac{1}{3} \times \frac{1}{2} \sqrt{35} \times h = \frac{\sqrt{805}}{6\sqrt{2}}$
$h = \frac{\sqrt{23}}{\sqrt{2}}$
$\text{AE}^2 = \text{AD}^2 – \text{DE}^2 = \frac{13}{18} \quad : \quad \text{AE} = \frac{\sqrt{13}}{\sqrt{18}}$
$\overrightarrow{AE} = |\overrightarrow{AE}| \left( \frac{\hat{i} – 5\hat{k}}{\sqrt{26}} \right)$
$= \frac{\sqrt{13}}{\sqrt{18}} \cdot \frac{\hat{i} – 5\hat{k}}{\sqrt{26}}$
$= \frac{\sqrt{13} (\hat{i} – 5\hat{k})}{\sqrt{18} \cdot \sqrt{26}} = \frac{\hat{i} – 5\hat{k}}{6}$
$\text{P.V. of E} = \frac{\hat{i} – 5\hat{k}}{6} + \hat{i} + 2\hat{j} + \hat{k} = \frac{1}{6} (7\hat{i} + 12\hat{j} + \hat{k})$