Home / IIT- JEE / IIT-JEE Main / IIT JEE Main Maths -Unit 12 – Vectors and Scalars- Exam Style Questions

IIT JEE Main Maths -Unit 12 - Vectors and Scalars- Exam Style Questions- New Syllabus

Question 
Let \( \mathbf{c} \) be the projection vector of \( \mathbf{b} = \lambda \hat{i} + 4 \hat{k} \), \( \lambda > 0 \), on the vector \( \mathbf{a} = \hat{i} + 2 \hat{j} + 2 \hat{k} \). If \( |\mathbf{a} + \mathbf{c}| = 7 \), then the area of the parallelogram formed by the vectors \( \mathbf{b} \) and \( \mathbf{c} \) is ______.
▶️ Answer/Explanation

Ans. (16)

Sol. \( \mathbf{c} = \frac{(\mathbf{b} \cdot \mathbf{a})}{|\mathbf{a}|^2} \mathbf{a} \)

\( = \frac{(\lambda + 8)}{9} (\hat{i} + 2 \hat{j} + 2 \hat{k}) \)

\( |\mathbf{a} + \mathbf{c}| = 7 \Rightarrow \lambda = 4 \)

Area of parallelogram = \( |\mathbf{b} \times \mathbf{c}| = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{4}{3} & \frac{8}{3} & \frac{8}{3} \\ 4 & 0 & 4 \end{vmatrix} = 16 \)

Question 
Let $a$ and $b$ be two unit vectors such that the angle between them is $\frac{\pi}{3}$. If $\lambda a + 2b$ and $3a – \lambda b$ are perpendicular to each other, then the number of values of $\lambda$ in $[-1, 3]$ is :
(1) 3
(2) 2
(3) 1
(4) 0
▶ Answer/Explanation

Ans. (4)
Sol.

\(\hat{a}.\hat{b} = \frac{1}{2}\)

\(\text{Now } (\lambda\hat{a} + 2\hat{b}).(3\hat{a} – \lambda\hat{b}) = 0\)

\(3\lambda\hat{a}.\hat{a} – \lambda^2\hat{a}.\hat{b} + 6\hat{a}.\hat{b} – 2\lambda\hat{b}.\hat{b} = 0\)

\(3\lambda – \frac{\lambda^2}{2} + 3 – 2\lambda = 0\)

\(\lambda^2 – 2\lambda – 6 = 0\)

\(\lambda = 1 \pm \sqrt{7}\)

\(\Rightarrow \text{number of values} = 0\)

Question 

Let the arc AC of a circle subtend a right angle at the centre O. If the point B on the arc AC divides the arc AC such that
\( \frac{\text{length of arc AB}}{\text{length of arc BC}} = \frac{1}{5} \),
and \( \overrightarrow{OC} = \alpha \overrightarrow{OA} + \beta \overrightarrow{OB} \),
then \( (2\alpha – \beta) = \)

(1) \( 2\sqrt{3} – 3 \) 

(2) \( 2\sqrt{3} \)

(3) \( 5\sqrt{3} \)

(4) \( 2 + \sqrt{3} \)

▶️ Answer/Explanation

Ans. (1)

Sol.


Let \( \angle AOB = 15^\circ \), \( \angle BOC = 75^\circ \).

Using vector relations:

\( \overrightarrow{OC} = \alpha \overrightarrow{OA} + \beta \overrightarrow{OB} \)

\( \overrightarrow{a} \cdot \overrightarrow{c} = \alpha a^2 + \beta (\overrightarrow{a} \cdot \overrightarrow{b}) \Rightarrow 0 = \alpha + \beta \cos 15^\circ \) …(1)

\( \overrightarrow{b} \cdot \overrightarrow{c} = \alpha (\overrightarrow{b} \cdot \overrightarrow{a}) + \beta b^2 \Rightarrow \cos 75^\circ = \alpha \cos 15^\circ + \beta \) …(2)

From (1) and (2),

\( \cos 75^\circ = -\beta \cos^2 15^\circ + \beta \)

\( \Rightarrow \beta = \frac{\sin 15^\circ}{\sin 15^\circ \cos 15^\circ} = 2 – \sqrt{3} \)

\( \alpha = \frac{3 – \sqrt{3}}{2} \)

\( \therefore (2\alpha – \beta) = 2\sqrt{3} – 3 \)

Question 

Let the position vectors of the vertices A, B and C of a tetrahedron ABCD be \(\hat{i} + 2\hat{j} + \hat{k}\), \(\hat{i} + 3\hat{j} – 2\hat{k}\) and \(2\hat{i} – \hat{j} + \hat{k}\) respectively. The altitude from the vertex D to the opposite face ABC meets the median line segment through A of the triangle ABC at the point E. If the length of AD is \(\frac{\sqrt{110}}{3}\) and the volume of the tetrahedron is \(\frac{\sqrt{805}}{6\sqrt{2}}\), then the position vector of E is

(1) \(\frac{1}{2} (\hat{i} + 4\hat{j} + 7\hat{k})\)
(2) \(\frac{1}{12} (7\hat{i} + 4\hat{j} – 3\hat{k})\)
(3) \(\frac{1}{6} (12\hat{i} + 12\hat{j} + \hat{k})\)
(4) \(\frac{1}{6} (7\hat{i} + 12\hat{j} + \hat{k})\)

▶️ Answer/Explanation

Ans. (4)

Sol.

$\text{Area of }\triangle ABC = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}$

$= \frac{1}{2} |\hat{i} + 3\hat{j} + \hat{k}| = \frac{1}{2} \sqrt{35}$

$\text{volume of tetrahedron}$

$= \frac{1}{3} \times \text{Base area} \times h = \frac{\sqrt{805}}{6\sqrt{2}}$

$\frac{1}{3} \times \frac{1}{2} \sqrt{35} \times h = \frac{\sqrt{805}}{6\sqrt{2}}$

$h = \frac{\sqrt{23}}{\sqrt{2}}$

$\text{AE}^2 = \text{AD}^2 – \text{DE}^2 = \frac{13}{18} \quad : \quad \text{AE} = \frac{\sqrt{13}}{\sqrt{18}}$

$\overrightarrow{AE} = |\overrightarrow{AE}| \left( \frac{\hat{i} – 5\hat{k}}{\sqrt{26}} \right)$

$= \frac{\sqrt{13}}{\sqrt{18}} \cdot \frac{\hat{i} – 5\hat{k}}{\sqrt{26}}$

$= \frac{\sqrt{13} (\hat{i} – 5\hat{k})}{\sqrt{18} \cdot \sqrt{26}} = \frac{\hat{i} – 5\hat{k}}{6}$

$\text{P.V. of E} = \frac{\hat{i} – 5\hat{k}}{6} + \hat{i} + 2\hat{j} + \hat{k} = \frac{1}{6} (7\hat{i} + 12\hat{j} + \hat{k})$

Scroll to Top