IIT JEE Main Maths -Unit 3 -Determinants- Exam Style Questions- New Syllabus
▶️ Answer/Explanation
Ans. (34)
Sol. \( |A| = -2 \)
\( \det(3 \text{adj}(-6 \text{adj}(3A))) = 3^3 \det(\text{adj}(-6 \text{adj}(3A))) \)
\( = 3^3 (-6)^6 (\det(3A))^4 \)
\( = 3^{21} \times 2^{10} \)
\( m + n = 10 \)
\( mn = 21 \)
\( m = 7, n = 3 \)
\( 4m + 2n = 4 \times 7 + 2 \times 3 = 28 + 6 = 34 \)
(1) 56
(2) 132
(3) 174
(4) 280
▶ Answer/Explanation
Sol. $|A|= \frac{1}{2}$, trace$(A) = 3$, $B = \text{adj}(\text{adj}(2A))=|2A|^{n-2}(2A)$
$n = 3$, $B = |2A|(2A) = 2^3.|A|(2A) = 8A$
$|B| = |8A| = 8^3.|A| = 2^8 = 256$
trace$(B) = 8 \text{ trace}(A) = 24$
$|B| + \text{trace}(B) = 280$
If A, B and \((\text{adj}(A^{-1}) + \text{adj}(B^{-1}))\) are non-singular matrices of same order, then the inverse of \(A(\text{adj}(A^{-1}) + \text{adj}(B^{-1}))^{-1}B\), is equal to
(1) \(AB^{-1} + A^{-1}B\)
(2) \(\text{adj}(B^{-1}) + \text{adj}(A^{-1})\)
(3) \(AB^{-1} (\text{adj}(B) + \text{adj}(A))\)
(4) \(\frac{1}{AB} (A^{-1}B + BA^{-1})\)
▶️ Answer/Explanation
Ans. (3)
Sol.
$\left[ A(\text{adj}(A^{-1}) + \text{adj}(B^{-1})) \right] B^{-1}$
$B^{-1}(\text{adj}(A^{-1}) + \text{adj}(B^{-1})) A^{-1}$
$B^{-1}\text{adj}(A^{-1}) A^{-1} + B^{-1}(\text{adj}(B^{-1})) A^{-1}$
$B^{-1} |A^{-1}| I + B^{-1} |A^{-1}|$
$\frac{B^{-1}}{|A|} + \frac{A^{-1}}{|B|}$
$\Rightarrow \frac{\text{adj}B}{|B| |A|} + \frac{\text{adj}A}{|A| |B|}$
$= \frac{1}{|A| |B|} (\text{adj}B + \text{adj}A)$