Home / IIT- JEE / IIT-JEE Main / IIT JEE Main Maths -Unit 6 -Arithmetic and Geometric progressions- Exam Style Questions

IIT JEE Main Maths -Unit 6 -Arithmetic and Geometric progressions- Exam Style Questions- New Syllabus

Question 
Let \( a_1, a_2, a_3, \dots \) be a G.P. of increasing positive terms. If \( a_1 a_5 = 28 \) and \( a_2 + a_4 = 29 \), then \( a_6 \) is equal to:
(1) 628
(2) 526
(3) 784
(4) 812
▶️ Answer/Explanation

From \( a_1 a_5 = a \cdot a r^4 = a^2 r^4 = 28 \) …(1) From \( a_2 + a_4 = ar + ar^3 = ar(1 + r^2) = 29 \) …(2) Dividing (2)\(^2\) by (1): \( a^2 r^2 (1 + r^2)^2 / (a^2 r^4) = (29)^2 / 28 \) gives \( \frac{(1+r^2)^2}{r^2} = \frac{841}{28} \). Solving, \( r = \sqrt{28} \), \( a = \frac{1}{\sqrt{28}} \). Then \( a_6 = a r^5 = \frac{1}{\sqrt{28}} \cdot (28)^{5/2} = 784 \).

Hence, the correct answer is (3) 784.
Question 
If \(T_r = \dfrac{(2n+1)(2n-1)(2n-3)(2n-5)}{64}\), then \(\lim_{n \to \infty} \sum_{r=1}^n \dfrac{1}{T_r}\) is equal to:
\((1)\ 1\)
\((2)\ 0\)
\((3)\ \dfrac{2}{3}\)
\((4)\ \dfrac{1}{3}\)
▶️ Answer/Explanation
\(T_n = S_n – S_{n-1} \Rightarrow T_n = \dfrac{1}{8(2n-1)(2n+1)(2n+3)}\)
\(\sum_{r=1}^n \dfrac{1}{T_r} = \sum_{r=1}^n 8 \left[ \dfrac{1}{(2r-1)(2r+1)} – \dfrac{1}{(2r+1)(2r+3)} \right]\)
This telescopes to \(\dfrac{2}{3}\) as \(n \to \infty\).
The correct answer is \((3)\ \dfrac{2}{3}\).
Question 
Suppose that the number of terms in an A.P. is $2k$, $k\in\mathbb{N}$. If the sum of all odd terms of the A.P. is 40, the sum of all even terms is 55 and the last term of the A.P. exceeds the first term by 27, then $k$ is equal to
(1) 5
(2) 8
(3) 6
(4) 4
▶ Answer/Explanation
Ans. (1)
Sol. $a_1, a_2, a_3,\ldots, a_{2k}$ $\rightarrow$ A.P.
$\sum_{r=1}^{k} a_{2r-1} = 40$,
$\sum_{r=1}^{k} a_{2r} = 55$, $a_{2k} – a_1 = 27$
$\frac{k}{2} [2a_1 + (k – 1)2d] = 40$, $\frac{k}{2} [2a_2 + (k – 1)2d] = 55$,
$d = \frac{27}{2k-1}$
$a_1 = \frac{40}{k} – (k – 1)d = \frac{55}{k} – kd$
$d = \frac{15}{k}$ $\Rightarrow \frac{27}{2k-1} = \frac{15}{k}$ $\Rightarrow 9k = 10k – 5$
$\therefore k = 5$
Question 

If the first term of an A.P. is 3 and the sum of its first four terms is equal to one-fifth of the sum of the next four terms, then the sum of the first 20 terms is equal to

(1) -1200
(2) -1080
(3) -1020
(4) -120

▶️ Answer/Explanation

Ans. (2)

Sol. \(a = 3\)
\(S_4 = \frac{1}{5} (S_8 – S_4)\)
\(\Rightarrow 5S_4 = S_8 – S_4\)
\(\Rightarrow 6S_4 = S_8\)
\(\Rightarrow \frac{4}{2} [2 \cdot 3 + (4-1)d] = \frac{8}{2} [2 \cdot 3 + (8-1)d]\)
\(\Rightarrow 12(6 + 3d) = 4(6 + 7d)\)
\(\Rightarrow 18 + 9d = 6 + 7d\)
\(\Rightarrow d = -6\)
\(S_{20} = \frac{20}{2} [2 \cdot 3 + (20-1)(-6)]\)
\(= 10 [6 – 114]\)
\(= -1080\)

Scroll to Top