IIT JEE Main Maths -Unit 7 -Differentiation functions- Exam Style Questions- New Syllabus
Question
Let $f(x) = \int_0^x \frac{t^2}{8t^2 – 15} e^{-t} dt$, $x \in \mathbb{R}$. Then the numbers of local maximum and local minimum points of $f$, respectively, are :
(1) 2 and 3
(2) 3 and 2
(3) 1 and 3
(4) 2 and 2
(1) 2 and 3
(2) 3 and 2
(3) 1 and 3
(4) 2 and 2
▶ Answer/Explanation
Ans. (1)
Sol. $f'(x) = \frac{x^2}{8x^2 – 15} e^{-x} (2x)$
= $\frac{x^2 (x – 3)(x + 5)(2x)}{e^x}$
– 0 + + + – –
Maxima at $x \in \{-\sqrt{3}, \sqrt{3}\}$
Minima at $x \in \{-5, 0, 5\}$
2 points of maxima and 3 points of minima.
Sol. $f'(x) = \frac{x^2}{8x^2 – 15} e^{-x} (2x)$
= $\frac{x^2 (x – 3)(x + 5)(2x)}{e^x}$
– 0 + + + – –
Maxima at $x \in \{-\sqrt{3}, \sqrt{3}\}$
Minima at $x \in \{-5, 0, 5\}$
2 points of maxima and 3 points of minima.