IIT JEE Main Maths -Unit 7 -Limits, continuity, and differentiability- Exam Style Questions- New Syllabus
\( f(x) = \begin{cases} -3ax – 2, & x < 1 \\ a^2 + bx, & x \geq 1 \end{cases} \)
Be differentiable for all \( x \in \mathbb{R} \), where \( a > 1, b \in \mathbb{R} \). If the area of the region enclosed by \( y = f(x) \) and the line \( y = -20 \) is \( \alpha + \beta \sqrt{3} \), \( \alpha, \beta \in \mathbb{Z} \), then the value of \( \alpha + \beta \) is ____.
▶️ Answer/Explanation
Ans. (34)
Sol. \( f(x) \) is continuous and differentiable
at \( x = 1 \); LHL = RHL, LHD = RHD
\( -3a – 2 = a^2 + b, -6a = b \)
\( a = 2, 1; b = -12 \)
\( f(x) = \begin{cases} -6x – 2, & x < 1 \\ 4 – 12x, & x \geq 1 \end{cases} \)
\(\text{Area} = \int_{-\sqrt{3}}^{1} \big(-6x^2 – 2 – (-20)\big),dx ;+; \int_{1}^{2} \big(4 – 12x – (-20)\big),dx\)
\(= \int_{-\sqrt{3}}^{1} (-6x^2 + 18),dx ;+; \int_{1}^{2} (24 – 12x),dx\)
\(= \Big\( -2x^3 + 18x \Big\){-\sqrt{3}}^{1} ;+; \Big\( 24x – 6x^2 \Big\){1}^{2}\)
\(\text{Area} = (16 + 12\sqrt{3}) + 6 = 22 + 12\sqrt{3}.\)
So,
\(\alpha = 22,\quad \beta = 12,\quad \alpha + \beta = 34.\)
(1) $e$
(2) $e^{-2}$
(3) $e^2$
(4) $e^{-1}$
▶ Answer/Explanation
Sol. $\alpha = \lim_{x \to \infty} \frac{x}{e^x – 1} \frac{1}{x} \left( \frac{1}{e} + \frac{1}{e^x} \right)$
($1^\infty$ form)
$\therefore \alpha = e^L$
Where $L = \lim_{x \to \infty} \frac{\frac{x}{e^x – 1}}{x} \frac{1}{1 – \frac{1}{e} – \frac{1}{e^x}}$
$\Rightarrow L = \lim_{x \to \infty} \frac{\frac{x}{e^x – 1}}{x} \frac{1}{1 – \frac{1}{e} – \frac{1}{e^x}}$
$\Rightarrow L = \lim_{x \to \infty} \frac{\frac{x}{e^x – 1}}{1 – \frac{1}{e} – \frac{1}{e^x}}$
$\Rightarrow L = \frac{e}{1 – \frac{1}{e}}$
$\therefore \alpha = \frac{e}{e – 1}$ $\Rightarrow \log \alpha = \frac{e}{e – 1}$
$\therefore$ Required value = $e^{\frac{1}{e} \log (1 + \alpha) + \log \alpha} = e$
If the function
\(
f(x) =
\begin{cases}
\dfrac{2}{x} \left[ \sin{(k_1 + 1)x} + \sin{(k_2 – 1)x} \right], & x < 0 \\(6pt]
4, & x = 0 \\(6pt]
\dfrac{2}{x} \log_e{\left( \dfrac{2 + k_1 x}{2 + k_2 x} \right)}, & x > 0
\end{cases}
\)
is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to
(1) \( 8 \)
(2) \( 20 \)
(3) \( 5 \)
(4) \( 10 \)
▶️ Answer/Explanation
\(\text{Ans. } (4)\)
\(\text{Sol. }\)
\(
\lim_{x \to 0^-} \frac{2}{x} \left[ \sin{(k_1 + 1)x} + \sin{(k_2 – 1)x} \right] = 4
\(
\(\Rightarrow 2(k_1 + 1) + 2(k_2 – 1) = 4\)
\(\Rightarrow k_1 + k_2 = 2\)
\(
\lim_{x \to 0^+} \frac{2}{x} \ln{\left( \frac{2 + k_1 x}{2 + k_2 x} \right)} = 4
\(
\(\Rightarrow \lim_{x \to 0} 2 \ln{\left( \frac{1 + \frac{k_1 x}{2}}{1 + \frac{k_2 x}{2}} \right)} \cdot \frac{1}{x} = 4\)
Using \(\ln(1 + a) \approx a\) for small \(a\),
\(\Rightarrow 2 \times \frac{1}{x} \times \left( \frac{k_1 x}{2} – \frac{k_2 x}{2} \right) = 4\)
\(\Rightarrow k_1 – k_2 = 2\)
Now, solving the two equations:
\(
\begin{cases}
k_1 + k_2 = 2 \\
k_1 – k_2 = 2
\end{cases}
\Rightarrow
k_1 = 2, \, k_2 = 0
\(
\(\therefore k_1^2 + k_2^2 = 2^2 + 0^2 = 4\)
However, checking with correct substitution in the logarithmic condition gives
\( k_1 – k_2 = 4 \), not \(2\), hence:
\(
\begin{cases}
k_1 + k_2 = 2 \\
k_1 – k_2 = 4
\end{cases}
\Rightarrow
k_1 = 3, \, k_2 = -1
\(
\(\therefore k_1^2 + k_2^2 = 3^2 + (-1)^2 = 9 + 1 = 10\)