IIT JEE Main Maths -Unit 8 -Definite integrals- Exam Style Questions- New Syllabus
\( f(x) = \begin{cases} -3ax – 2, & x < 1 \\ a^2 + bx, & x \geq 1 \end{cases} \)
Be differentiable for all \( x \in \mathbb{R} \), where \( a > 1, b \in \mathbb{R} \). If the area of the region enclosed by \( y = f(x) \) and the line \( y = -20 \) is \( \alpha + \beta \sqrt{3} \), \( \alpha, \beta \in \mathbb{Z} \), then the value of \( \alpha + \beta \) is ____.
▶️ Answer/Explanation
Ans. (34)
Sol. \( f(x) \) is continuous and differentiable
at \( x = 1 \); LHL = RHL, LHD = RHD
\( -3a – 2 = a^2 + b, -6a = b \)
\( a = 2, 1; b = -12 \)
\( f(x) = \begin{cases} -6x – 2, & x < 1 \\ 4 – 12x, & x \geq 1 \end{cases} \)
\(\text{Area} = \int_{-\sqrt{3}}^{1} \big(-6x^2 – 2 – (-20)\big),dx ;+; \int_{1}^{2} \big(4 – 12x – (-20)\big),dx\)
\(= \int_{-\sqrt{3}}^{1} (-6x^2 + 18),dx ;+; \int_{1}^{2} (24 – 12x),dx\)
\(= \Big\( -2x^3 + 18x \Big\){-\sqrt{3}}^{1} ;+; \Big\( 24x – 6x^2 \Big\){1}^{2}\)
\(\text{Area} = (16 + 12\sqrt{3}) + 6 = 22 + 12\sqrt{3}.\)
So,
\(\alpha = 22,\quad \beta = 12,\quad \alpha + \beta = 34.\)
▶ Answer/Explanation
Ans. (27)
\( \text{I.F.} = e^{-\frac{1}{2} \int \frac{2x}{1 – x^2} \, dx} = e^{-\frac{1}{2} \ln(1 – x^2)} = \sqrt{1 – x^2} \)
\( y \sqrt{1 – x^2} = \int (x^6 + 4x) \, dx = \frac{x^7}{7} + 2x^2 + c \)
\(\text{Given } y(0) = 0 \Rightarrow c = 0 \)
\( y = \frac{\frac{x^7}{7} + 2x^2}{\sqrt{1 – x^2}} \)
\(\text{Now, } 6 \int_{0}^{\frac{1}{2}} \frac{\frac{x^7}{7} + 2x^2}{\sqrt{1 – x^2}} \, dx = 6 \int_{0}^{\frac{1}{2}} \frac{2x^2}{\sqrt{1 – x^2}} \, dx \)
\( = 24 \int_{0}^{\frac{1}{2}} \frac{x^2}{\sqrt{1 – x^2}} \, dx \)
\text{Put } \( x = \sin \theta \)
\( dx = \cos \theta \, d\theta \)
\( = 24 \int_{0}^{\frac{\pi}{6}} \frac{\sin^2 \theta}{\cos \theta} \cos \theta \, d\theta \)
\( = 24 \int_{0}^{\frac{\pi}{6}} \frac{1 – \cos 2\theta}{2} \, d\theta = 12 \left[ \theta – \frac{\sin 2\theta}{2} \right]_{0}^{\frac{\pi}{6}} \)
\( = 12 \left( \frac{\pi}{6} – \frac{\sqrt{3}}{4} \right) \)
\( = 2\pi – 3\sqrt{3} \)
\( \alpha^2 = (3\sqrt{3})^2 = 27 \)
1. The value of \( \displaystyle \int_{e^2}^{e^4} \frac{1}{x}
\left( \dfrac{e^{\left( (\log_e x)^2 + 1 \right)^{-1}}}
{e^{\left( (\log_e x)^2 + 1 \right)^{-1}} + e^{\left( (6 – \log_e x)^2 + 1 \right)^{-1}}} \right) dx \) is
(1) \( \log_e 2 \)
(2) \( 2 \)
(3) \( 1 \)
(4) \( e^2 \)
▶️ Answer/Explanation
Answer: (3)
Solution:
\(\text{Ans. } (3)\)
\(\text{Sol. } \text{Let } \ln x = t \Rightarrow \frac{dx}{x} = dt\)
\( I = \displaystyle\int_{2}^{4} \frac{e^{\frac{1}{1 + t^2}}}{e^{\frac{1}{1 + t^2}} + e^{\frac{1}{1 + (6 – t)^2}}} \, dt \)
\( I = \displaystyle\int_{2}^{4} \frac{1}{1 + e^{\frac{1}{1 + (6 – t)^2} – \frac{1}{1 + t^2}}} \, dt \)
\( I = \displaystyle\int_{2}^{4} \frac{1}{e^{\frac{1}{1 + (6 – t)^2}} + e^{\frac{1}{1 + t^2}}} \, dt \)
\(\text{Now, let’s replace } t \text{ by } (6 – t) \text{ in the integral.}\)
\(\therefore 2I = \displaystyle\int_{2}^{4} dt = (t)_{2}^{4} = 4 – 2 = 2\)
\(\Rightarrow I = 1\)
▶️ Answer/Explanation
Ans. (77)
Sol.
\( x^2 + y^2 = 25 \)
\( x^2 + (x – 1)^2 = 25 \Rightarrow x = 4 \)
\( x^2 + (-x + 1)^2 = 25 \Rightarrow x = -3 \)
\( A = 25\pi – \int_{-3}^{4} \sqrt{25 – x^2} \, dx + \frac{1}{2} \times 4 \times 4 + \frac{1}{2} \times 3 \times 3 \)
\( A = 25\pi + \frac{25}{2} \left[ \frac{x}{2} \sqrt{25 – x^2} + \frac{25}{2} \sin^{-1}\!\frac{x}{5} \right]_{-3}^{4} \)
\( A = 25\pi + \frac{25}{2} \left[ \frac{1}{2} \left( 6 + \frac{25}{2} \sin^{-1}\!\frac{4}{5} + 6 + \frac{25}{2} \sin^{-1}\!\frac{3}{5} \right) \right] \)
\( A = 25\pi + \frac{1}{2} \cdot \frac{25}{2} \cdot \frac{\pi}{2} \Rightarrow A = \frac{75\pi}{4} + \frac{1}{2} \)
\( A = \frac{1}{4}(75\pi + 2) \)
\( b = 75, \, c = 2 \)
\( \therefore b + c = 75 + 2 = 77 \)