IIT JEE Main Maths -Unit 9 -Ordinary differential equations- Exam Style Questions- New Syllabus
▶️ Answer/Explanation
\(\frac{dx}{dy} + \left(\frac{1}{y^2}\right)x = \frac{1}{y^3}\)
\(\text{I.F.} = e^{\int \frac{1}{y^2}dy} = e^{-\frac{1}{y}}\)
\(\Rightarrow x \cdot e^{-\frac{1}{y}} = \int \left(e^{-\frac{1}{y}}\right)\frac{1}{y^3}dy\)
Put \(-\frac{1}{y} = t\)
\(+\frac{1}{y^2}dy = dt\)
\(x \cdot e^{-\frac{1}{y}} = – \int t e^t dt\)
\(x \cdot e^{-\frac{1}{y}} = -te^t + e^t + C\)
\(x \cdot e^{-\frac{1}{y}} = \frac{1}{e} + \frac{1}{y} e^{-\frac{1}{y}} + C\)
For \(x=1, \, y=1\):
\(\frac{1}{e} = \frac{1}{e} + \frac{1}{e} + C\)
\(\Rightarrow C = -\frac{1}{e}\)
Put \(y = \frac{1}{2}\):
\(\frac{x}{e^2} = \frac{2}{e^2} + \frac{1}{e^2} – \frac{1}{e}\)
\(\therefore x = 3 – e\)
(1) $e^{\pi/4}$
(2) $e^{\pi/12}$
(3) $e^{\pi/3}$
(4) $e^{\pi/6}$
▶ Answer/Explanation
Ans. (4)
\( \frac{dx}{dy} + \frac{x}{1 + y^2} = \frac{2e^{\tan^{-1}y}}{1 + y^2} \)
\( \text{I.F.} = e^{\tan^{-1}y} \)
\( x e^{\tan^{-1}y} = \int \frac{2(e^{\tan^{-1}y})^2}{1 + y^2} \, dy \)
\(\text{Put } \tan^{-1}y = t, \, \frac{dy}{1 + y^2} = dt \)
\( x e^{\tan^{-1}y} = \int 2e^{2t} \, dt \)
\( x e^{\tan^{-1}y} = e^{2t} + c \)
\( x = e^{t – \tan^{-1}y} + c e^{-\tan^{-1}y} \)
\(\text{When } y = 0, \, x = 1: \, 1 = 1 + c \Rightarrow c = 0 \)
\( y = \frac{1}{\sqrt{3}}, \, x = e^{\pi/6} \)
▶ Answer/Explanation
Ans. (27)
\( \text{I.F.} = e^{-\frac{1}{2} \int \frac{2x}{1 – x^2} \, dx} = e^{-\frac{1}{2} \ln(1 – x^2)} = \sqrt{1 – x^2} \)
\( y \sqrt{1 – x^2} = \int (x^6 + 4x) \, dx = \frac{x^7}{7} + 2x^2 + c \)
\(\text{Given } y(0) = 0 \Rightarrow c = 0 \)
\( y = \frac{\frac{x^7}{7} + 2x^2}{\sqrt{1 – x^2}} \)
\(\text{Now, } 6 \int_{0}^{\frac{1}{2}} \frac{\frac{x^7}{7} + 2x^2}{\sqrt{1 – x^2}} \, dx = 6 \int_{0}^{\frac{1}{2}} \frac{2x^2}{\sqrt{1 – x^2}} \, dx \)
\( = 24 \int_{0}^{\frac{1}{2}} \frac{x^2}{\sqrt{1 – x^2}} \, dx \)
\text{Put } \( x = \sin \theta \)
\( dx = \cos \theta \, d\theta \)
\( = 24 \int_{0}^{\frac{\pi}{6}} \frac{\sin^2 \theta}{\cos \theta} \cos \theta \, d\theta \)
\( = 24 \int_{0}^{\frac{\pi}{6}} \frac{1 – \cos 2\theta}{2} \, d\theta = 12 \left[ \theta – \frac{\sin 2\theta}{2} \right]_{0}^{\frac{\pi}{6}} \)
\( = 12 \left( \frac{\pi}{6} – \frac{\sqrt{3}}{4} \right) \)
\( = 2\pi – 3\sqrt{3} \)
\( \alpha^2 = (3\sqrt{3})^2 = 27 \)
5. Let a curve \( y = f(x) \) pass through the points \( (0, 5) \) and \( (\log_e 2, k) \). If the curve satisfies the differential equation
\( 2(3 + y)e^{2x}dx – (7 + e^{2x})dy = 0 \), then \( k \) is equal to
(1) $16 $
(2) $8$
(3) $32 $
(4) $4$
▶️ Answer/Explanation
Ans. (2)
Sol.
\( 2(3 + y)e^{2x}dx = (7 + e^{2x})dy \)
\( \Rightarrow \frac{dy}{dx} = \frac{2(3 + y)e^{2x}}{7 + e^{2x}} \)
\( \Rightarrow \frac{dy}{dx} – \frac{2e^{2x}}{7 + e^{2x}}y = \frac{6e^{2x}}{7 + e^{2x}} \)
Integrating factor \( I.F. = e^{-\int \frac{2e^{2x}}{7 + e^{2x}}dx} = e^{-\ln(7 + e^{2x})} = \frac{1}{7 + e^{2x}} \)
\( \therefore y \cdot \frac{1}{7 + e^{2x}} = \int \frac{6e^{2x}}{(7 + e^{2x})^2} dx \)
Put \( 7 + e^{2x} = t \Rightarrow dt = 2e^{2x} dx \)
\( \Rightarrow \int \frac{6e^{2x}}{(7 + e^{2x})^2} dx = 3 \int \frac{dt}{t^2} = -\frac{3}{t} + C \)
\( \therefore y = -3(7 + e^{2x}) + C(7 + e^{2x}) \)
Using \( (0, 5) \Rightarrow 5 = -3(8) + 8C \Rightarrow 5 = -24 + 8C \Rightarrow C = \frac{29}{8} \)
\( \therefore y = -3 + 7 + e^{2x} = e^{2x} + 4 \)
\( \therefore k = 8 \)