Home / IIT- JEE / IIT-JEE Main / IIT JEE Main Maths -Unit 9 -Ordinary differential equations- Exam Style Questions

IIT JEE Main Maths -Unit 9 -Ordinary differential equations- Exam Style Questions- New Syllabus

Question 
Let \(x = x(y)\) be the solution of the differential equation \(\left(\dfrac{y^2+1}{y}\right)dx – x\,dy = 0\). If \(x(1) = 1\), then \(\dfrac{x(1/2)}{2}\) is:
\((1)\ 1+\dfrac{e}{2}\)
\((2)\ 3+\dfrac{e}{2}\)
\((3)\ 3 – e\)
\((4)\ 3 + e\)
▶️ Answer/Explanation

\(\frac{dx}{dy} + \left(\frac{1}{y^2}\right)x = \frac{1}{y^3}\)

\(\text{I.F.} = e^{\int \frac{1}{y^2}dy} = e^{-\frac{1}{y}}\)

\(\Rightarrow x \cdot e^{-\frac{1}{y}} = \int \left(e^{-\frac{1}{y}}\right)\frac{1}{y^3}dy\)

Put \(-\frac{1}{y} = t\)

\(+\frac{1}{y^2}dy = dt\)

\(x \cdot e^{-\frac{1}{y}} = – \int t e^t dt\)

\(x \cdot e^{-\frac{1}{y}} = -te^t + e^t + C\)

\(x \cdot e^{-\frac{1}{y}} = \frac{1}{e} + \frac{1}{y} e^{-\frac{1}{y}} + C\)

For \(x=1, \, y=1\):

\(\frac{1}{e} = \frac{1}{e} + \frac{1}{e} + C\)

\(\Rightarrow C = -\frac{1}{e}\)

Put \(y = \frac{1}{2}\):

\(\frac{x}{e^2} = \frac{2}{e^2} + \frac{1}{e^2} – \frac{1}{e}\)

\(\therefore x = 3 – e\)

Question 
If $x = f(y)$ is the solution of the differential equation $(1 + y^2) + (\tan^{-1} y) \frac{dy}{dx} (x – 2e^{-1}) = 0$, $y \in (-\frac{\pi}{2}, \frac{\pi}{2})$ with $f(0) = 1$, then $f(\frac{1}{\sqrt{3}})$ is equal to :
(1) $e^{\pi/4}$
(2) $e^{\pi/12}$
(3) $e^{\pi/3}$
(4) $e^{\pi/6}$
▶ Answer/Explanation

Ans. (4) 

\( \frac{dx}{dy} + \frac{x}{1 + y^2} = \frac{2e^{\tan^{-1}y}}{1 + y^2} \)

\( \text{I.F.} = e^{\tan^{-1}y} \)

\( x e^{\tan^{-1}y} = \int \frac{2(e^{\tan^{-1}y})^2}{1 + y^2} \, dy \)

\(\text{Put } \tan^{-1}y = t, \, \frac{dy}{1 + y^2} = dt \)

\( x e^{\tan^{-1}y} = \int 2e^{2t} \, dt \)

\( x e^{\tan^{-1}y} = e^{2t} + c \)

\( x = e^{t – \tan^{-1}y} + c e^{-\tan^{-1}y} \)

\(\text{When } y = 0, \, x = 1: \, 1 = 1 + c \Rightarrow c = 0 \)

\( y = \frac{1}{\sqrt{3}}, \, x = e^{\pi/6} \)

Question 
Let $y = f(x)$ be the solution of the differential equation $\frac{dy}{dx} + \frac{xy^2 + x}{x^2 – 1} = \frac{4x}{1 – x^2}$, $-1 < x < 1$ such that $f(0) = 0$. If $6 \int_{-1/2}^{1/2} f(x) dx = \alpha \pi$, then $\alpha^2$ is equal to __________.
▶ Answer/Explanation

Ans. (27) 

\( \text{I.F.} = e^{-\frac{1}{2} \int \frac{2x}{1 – x^2} \, dx} = e^{-\frac{1}{2} \ln(1 – x^2)} = \sqrt{1 – x^2} \)

\( y \sqrt{1 – x^2} = \int (x^6 + 4x) \, dx = \frac{x^7}{7} + 2x^2 + c \)

\(\text{Given } y(0) = 0 \Rightarrow c = 0 \)

\( y = \frac{\frac{x^7}{7} + 2x^2}{\sqrt{1 – x^2}} \)

\(\text{Now, } 6 \int_{0}^{\frac{1}{2}} \frac{\frac{x^7}{7} + 2x^2}{\sqrt{1 – x^2}} \, dx = 6 \int_{0}^{\frac{1}{2}} \frac{2x^2}{\sqrt{1 – x^2}} \, dx \)

\( = 24 \int_{0}^{\frac{1}{2}} \frac{x^2}{\sqrt{1 – x^2}} \, dx \)

\text{Put } \( x = \sin \theta \)

\( dx = \cos \theta \, d\theta \)

\( = 24 \int_{0}^{\frac{\pi}{6}} \frac{\sin^2 \theta}{\cos \theta} \cos \theta \, d\theta \)

\( = 24 \int_{0}^{\frac{\pi}{6}} \frac{1 – \cos 2\theta}{2} \, d\theta = 12 \left[ \theta – \frac{\sin 2\theta}{2} \right]_{0}^{\frac{\pi}{6}} \)

\( = 12 \left( \frac{\pi}{6} – \frac{\sqrt{3}}{4} \right) \)

\( = 2\pi – 3\sqrt{3} \)

\( \alpha^2 = (3\sqrt{3})^2 = 27 \)

Question 

5. Let a curve \( y = f(x) \) pass through the points \( (0, 5) \) and \( (\log_e 2, k) \). If the curve satisfies the differential equation
\( 2(3 + y)e^{2x}dx – (7 + e^{2x})dy = 0 \), then \( k \) is equal to

(1) $16 $

(2) $8$

(3) $32 $

(4) $4$

▶️ Answer/Explanation

Ans. (2)

Sol.
\( 2(3 + y)e^{2x}dx = (7 + e^{2x})dy \)

\( \Rightarrow \frac{dy}{dx} = \frac{2(3 + y)e^{2x}}{7 + e^{2x}} \)

\( \Rightarrow \frac{dy}{dx} – \frac{2e^{2x}}{7 + e^{2x}}y = \frac{6e^{2x}}{7 + e^{2x}} \)

Integrating factor \( I.F. = e^{-\int \frac{2e^{2x}}{7 + e^{2x}}dx} = e^{-\ln(7 + e^{2x})} = \frac{1}{7 + e^{2x}} \)

\( \therefore y \cdot \frac{1}{7 + e^{2x}} = \int \frac{6e^{2x}}{(7 + e^{2x})^2} dx \)

Put \( 7 + e^{2x} = t \Rightarrow dt = 2e^{2x} dx \)

\( \Rightarrow \int \frac{6e^{2x}}{(7 + e^{2x})^2} dx = 3 \int \frac{dt}{t^2} = -\frac{3}{t} + C \)

\( \therefore y = -3(7 + e^{2x}) + C(7 + e^{2x}) \)

Using \( (0, 5) \Rightarrow 5 = -3(8) + 8C \Rightarrow 5 = -24 + 8C \Rightarrow C = \frac{29}{8} \)

\( \therefore y = -3 + 7 + e^{2x} = e^{2x} + 4 \)

\( \therefore k = 8 \)

Scroll to Top