IB DP Further Mathematics 5.4 HL Paper 2

Marks available5
Reference code10M.2.hl.TZ0.6

Question

The diagram shows a sketch of the graph of \(y = {x^{ – 4}}\) for \(x > 0\) .


By considering this sketch, show that, for \(n \in {\mathbb{Z}^ + }\) ,\[\sum\limits_{r = n + 1}^\infty  {\frac{1}{{{r^4}}}}  < \int_n^\infty  {\frac{{{\rm{d}}x}}{{{x^4}}}}  < \sum\limits_{r = n}^\infty  {\frac{1}{{{r^4}}}} .\]

[5]
a.

Let \(S = \sum\limits_{r = 1}^\infty  {\frac{1}{{{r^4}}}} \) .

Use the result in (a) to show that, for \(n \ge 2\) , the value of \(S\) lies between

\(\sum\limits_{r = 1}^{n – 1} {\frac{1}{{{r^4}}}}  + \frac{1}{{3{n^3}}}\) and \(\sum\limits_{r = 1}^n {\frac{1}{{{r^4}}}}  + \frac{1}{{3{n^3}}}\) .

[8]
b.

(i)     Show that, by taking \(n = 8\) , the value of \(S\) can be deduced correct to three decimal places and state this value.

(ii)     The exact value of \(S\) is known to be \(\frac{{{\pi ^4}}}{N}\)where \(N \in {\mathbb{Z}^ + }\) . Determine the value of \(N\) .

[6]
c.

Now let \(T = \sum\limits_{r = 1}^\infty  {\frac{{{{( – 1)}^{r + 1}}}}{{{r^4}}}} \) .

Find the value of \(T\) correct to three decimal places.

[3]
d.
Answer/Explanation

Markscheme

     (M1)

total area of “upper” rectangles

\( = \frac{1}{{{n^4}}} \times 1 + \frac{1}{{{{(n + 1)}^4}}} \times 1 + \frac{1}{{{{(n + 2)}^4}}} \times 1 +  \ldots  = \sum\limits_{r = n}^\infty  {\frac{1}{{{r^4}}}} \)     M1A1

total area of “lower” rectangles

\( = \frac{1}{{{{(n + 1)}^4}}} \times 1 + \frac{1}{{{{(n + 2)}^4}}} \times 1 + \frac{1}{{{{(n + 3)}^4}}} \times 1 +  \ldots  = \sum\limits_{r = n + 1}^\infty  {\frac{1}{{{r^4}}}} \)     A1

the total area under the curve from \(x = n\) to infinity lies between these two sums hence  \(\sum\limits_{r = n + 1}^\infty  {\frac{1}{{{r^4}}}}  < \int_n^\infty  {\frac{{{\rm{d}}x}}{{{x^4}}}}  < \sum\limits_{r = n}^\infty  {\frac{1}{{{r^4}}}} \)     R1AG

[5 marks]

a.

first evaluate the integral

\(\int_n^\infty  {\frac{{{\rm{d}}x}}{{{x^4}}}}  = – \left[ {\frac{1}{{3{x^3}}}} \right]_n^\infty  = \frac{1}{{3{n^3}}}\)     M1A1

it follows that

\(\sum\limits_{r = n + 1}^\infty  {\frac{1}{{{r^4}}}}  < \frac{1}{{3{n^3}}}\)     A1

adding \(\sum\limits_{r = 1}^n {\frac{1}{{{r^4}}}} \) to both sides,     M1

\(S < \sum\limits_{r = 1}^n {\frac{1}{{{r^4}}}}  + \frac{1}{{3{n^3}}}\)     A1

similarly,

\(\sum\limits_{r = n}^\infty  {\frac{1}{{{r^4}}}}  > \frac{1}{{3{n^3}}}\)     A1

adding \(\sum\limits_{r = 1}^{n – 1} {\frac{1}{{{r^4}}}} \) to both sides,     M1

\(S > \sum\limits_{r = 1}^{n – 1} {\frac{1}{{{r^4}}}}  + \frac{1}{{3{n^3}}}\)     A1

hence the value of \(S\) lies between

\(\sum\limits_{r = 1}^{n – 1} {\frac{1}{{{r^4}}}}  + \frac{1}{{3{n^3}}}\) and \(\sum\limits_{r = 1}^n {\frac{1}{{{r^4}}}}  + \frac{1}{{3{n^3}}}\)     AG

[8 marks]

b.

(i)     putting \(n = 8\) , we find that 

\(S < 1.08243 \ldots \) and \(S > 1.08219 \ldots \)     A1A1

it follows that \(S = 1.082\) to 3 decimal places     A1

(ii)     substituting this value of \(S\),

\(N \approx \frac{{{\pi ^4}}}{{1.082}} \approx 90.0268\)     M1A1

\(N = 90\)     A1

[6 marks]

c.

EITHER

successive partial sums are

1     M1

0.9375

0.9498…

0.9459…

0.9475…

0.9467…

0.9471…     A1

it follows that correct to 3 decimal places \(T = 0.947\)     A1

OR

\(T = S – \frac{2}{{16}}S\)    M1A1

using part (c)(i) or \(0.94703…\) using the sum given in part (c)(ii) \(0.9471…\)

it follows that \(T = 0.947\) correct to 3 decimal places     A1

[3 marks]

d.
Marks available5
Reference code12M.2.hl.TZ0.3

Question

(i)     Show that \(\frac{{\rm{d}}}{{{\rm{d}}\theta }}(\sec \theta \tan \theta  + \ln (\sec \theta  + \tan \theta )) = 2{\sec ^3}\theta \) .

(ii)     Hence write down \(\int {{{\sec }^3}\theta {\rm{d}}\theta } \) .

[5]
a.

Consider the differential equation \((1 + {x^2})\frac{{{\rm{d}}y}}{{{\rm{d}}x}} + xy = 1 + {x^2}\) given that \(y = 1\) when \(x = 0\) .

  (i)     Use Euler’s method with a step length of \(0.1\) to find an approximate value for y when \(x = 0.3\) .

  (ii)     Find an integrating factor for determining the exact solution of the differential equation.

  (iii)     Find the solution of the equation in the form \(y = f(x)\) .

  (iv)     To how many significant figures does the approximation found in part (i) agree with the exact value of \(y\) when \(x = 0.3\) ?

[24]
b.
Answer/Explanation

Markscheme

(i)     \(\frac{{\rm{d}}}{{{\rm{d}}\theta }}(\sec \theta \tan \theta  + \ln (\sec \theta  + \tan \theta ))\)

\( = {\sec ^3}\theta  + \sec \theta {\tan ^2}\theta  + \frac{{\sec \theta \tan \theta  + {{\sec }^2}\theta }}{{\sec \theta  + \tan \theta }}\)     M1A1A1

Note: Award M1 for a valid attempt to differentiate either term.

\( = {\sec ^3}\theta  + \sec \theta ({\sec ^2}\theta  – 1) + \sec \theta \)     A1

\( = 2{\sec ^3}\theta \)     AG 

(ii)     \(\int {{{\sec }^3}\theta {\rm{d}}\theta }  = \frac{1}{2}(\sec \theta \tan \theta  + \ln (\sec \theta  + \tan \theta ))( + C)\)     A1 

[5 marks]

a.

(i)      \(\frac{{{\rm{d}}y}}{{{\rm{d}}x}} = 1 – \frac{{xy}}{{1 + {x^2}}}\)     A1

Note: Accept tabular values correct to 3 significant figures.

\(y \approx 1.27\) when \(x = 0.3\)     A1

(ii)     consider the equation in the form

\(\frac{{{\rm{d}}y}}{{{\rm{d}}x}} + \frac{{xy}}{{1 + {x^2}}} = 1\)     (M1)

the integrating factor I is given by

\(I = \exp \int {\left( {\frac{x}{{1 + {x^2}}}} \right)} {\rm{d}}x\)     A1

\( = \exp \left( {\frac{1}{2}\ln (1 + {x^2})} \right)\)     A1

\( = \sqrt {1 + {x^2}} \)     A1

Note: Accept also the fact that the integrating factor for the original equation is \(\frac{1}{{\sqrt {1 + {x^2}} }}\) . 

(iii)     consider the equation in the form

\(\sqrt {1 + {x^2}} \frac{{{\rm{d}}y}}{{{\rm{d}}x}} + \frac{{xy}}{{\sqrt {1 + {x^2}} }} = \sqrt {1 + {x^2}} \)     (M1)

integrating,

\(y\sqrt {1 + {x^2}}  = \int {\sqrt {1 + {x^2}} {\rm{d}}x} \)     A1

to integrate the right hand side, put \(x = \tan \theta \) , \({\rm{d}}x = {\sec ^2}\theta {\rm{d}}\theta \)    M1A1

\(\int {\sqrt {1 + {x^2}} } {\rm{d}}x = \int {\sqrt {1 + {{\tan }^2}\theta } } .{\sec ^2}\theta {\rm{d}}\theta \)     A1

\( = \int {{{\sec }^3}\theta {\rm{d}}\theta } \)     A1

\( = \frac{1}{2}(\sec \theta \tan \theta  + \ln (\sec \theta  + \tan \theta ))\)

\( = \frac{1}{2}\left( {x\sqrt {1 + {x^2}}  + \ln (x + \sqrt {1 + {x^2}} )} \right)\)     A1

the solution to the differential equation is therefore

\(y\sqrt {1 + {x^2}}  = \frac{1}{2}\left( {x\sqrt {1 + {x^2}}  + \ln \left( {x + \sqrt {1 + {x^2}} } \right)} \right) + C\)      A1

Note: Do not penalize the omission of C at this stage.

\(y = 1\) when \(x = 0\) gives \(C = 1\)     M1A1

the solution is \(y = \frac{1}{{2\sqrt {1 + {x^2}} }}\left( {x\sqrt {1 + {x^2}}  + \ln \left( {x + \sqrt {1 + {x^2}} } \right)} \right) + \frac{1}{{\sqrt {1 + {x^2}} }}\)     A1 

(iv)     when \(x = 0.3\) , \(y = 1.249 \ldots \)     A1

the approximation is only correct to 1 significant figure     A1

[24 marks]

b.
Marks available6
Reference code13M.2.hl.TZ0.2

Question

(i)     Show that the improper integral \(\int_0^\infty  {\frac{1}{{{x^2} + 1}}} {\rm{d}}x\) is convergent.

(ii)     Use the integral test to deduce that the series \(\sum\limits_{n = 0}^\infty  {\frac{1}{{{n^2} + 1}}} \) is convergent, giving reasons why this test can be applied.

[6]
b.

(i)     Show that the series \(\sum\limits_{n = 0}^\infty  {\frac{{{{( – 1)}^n}}}{{{n^2} + 1}}} \) is convergent.

(ii)     If the sum of the above series is \(S\), show that \(\frac{3}{5} < S < \frac{2}{3}\) .

[6]
c.

For the series \(\sum\limits_{n = 0}^\infty  {\frac{{{x^n}}}{{{n^2} + 1}}} \)

  (i)     determine the radius of convergence;

  (ii)     determine the interval of convergence using your answers to (b) and (c).

[6]
d.
Answer/Explanation

Markscheme

(i)     consider \(\int_0^R {\frac{1}{{{x^2} + 1}}} {\rm{d}}x\)     M1 

\( = \left[ {\arctan (x)} \right]_0^R = \arctan (R)\)     A1

\(\mathop {\lim }\limits_{R \to \infty } \arctan (R) = \frac{\pi }{2}\) (a finite number)     R1

hence the improper integral is convergent     AG  

(ii)     the terms of the series are positive     A1

the terms are decreasing    A1

the terms tend to zero     A1

by the integral test, the series converges     AG  

[6 marks]

b.

(i)     the absolute values of the terms are monotonically decreasing     A1

to zero     A1

the series converges by the alternating series test     R1AG

Note: Accept absolute convergence, with reference to part (b)(ii) \( \Rightarrow \) convergence. 

(ii)     statement that successive partial sums bound the total sum     R1

\(S > \frac{1}{1} – \frac{1}{2} + \frac{1}{5} – \frac{1}{{10}} = \frac{3}{5}\)     A1

\(S < \frac{1}{1} – \frac{1}{2} + \frac{1}{5} – \frac{1}{{10}} + \frac{1}{{17}} = 0.6588\)     A1

\(S < 0.6588 < \frac{2}{3}\)     AG  

[6 marks]

c.

(i)     consider \(\left| {\frac{{\frac{{{x^{n + 1}}}}{{{{(n + 1)}^2} + 1}}}}{{\frac{{{x^n}}}{{{n^2} + 1}}}}} \right|\)     M1 

\( = \left| {\frac{{x({n^2} + 1)}}{{{{(n + 1)}^2} + 1}}} \right|\)     A1  

\( \to \left| x \right|\) as \(n \to \infty \)     A1

therefore radius of convergence \( = 1\)     A1  

(ii)     interval of convergence \( = \left[ { – 1,1} \right]\)     A1A1

Note: A1 for [\( – 1\), and A1 for \(1\)]. 

[6 marks]

d.
Marks available4
Reference code17M.2.hl.TZ0.5

Question

Consider the differential equation

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} + y\tan x = 2{\sec ^2}x,{\text{ }}0 \leqslant x < \frac{\pi }{2}\), given that \(y = 1\) when \(x = 0\).

By considering integration as the reverse of differentiation, show that for

\(0 \leqslant x < \frac{\pi }{2}\)

\[\int {\sec x{\text{d}}x = \ln (\sec x + \tan x) + C.} \]

[4]
a.i.

Hence, using integration by parts, show that

\[\int {{{\sec }^3}x{\text{d}}x = \frac{1}{2}\left( {\sec x\tan x + \ln (\sec x + \tan x)} \right) + C.} \]

[4]
a.ii.

Find an integrating factor and hence solve the differential equation, giving your answer in the form \(y = f(x)\).

[9]
b.i.

Starting with the differential equation, show that

\[\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + y = 2{\sec ^2}x\tan x.\]

[3]
b.ii.

Hence, by using your calculator to draw two appropriate graphs or otherwise, find the \(x\)-coordinate of the point of inflection on the graph of \(y = f(x)\).

[4]
b.iii.
Answer/Explanation

Markscheme

\(\frac{{\text{d}}}{{{\text{d}}x}}\left( {\ln (\sec x + \tan x)} \right) = \frac{{\sec x\tan x + {{\sec }^2}x}}{{\sec x + \tan x}}\)     M1

\( = \sec x\)     A1

therefore \(\int {\sec x{\text{d}}x = \ln (\sec x + \tan x) + C} \)     AG

[4 marks]

a.i.

\(\int {{{\sec }^3}x{\text{d}}x = \int {\sec x \times {{\sec }^2}x{\text{d}}x} } \)     M1

\( = \sec x\tan x – \int {\sec x{{\tan }^2}x{\text{d}}x} \)     A1A1

\( = \sec x\tan x – \int {\sec x({{\sec }^2}x – 1){\text{d}}x} \)     A1

\( = \sec x\tan x – \int {{{\sec }^3}x{\text{d}}x + \int {\sec x{\text{d}}x} } \)

\( = \sec x\tan x – \int {{{\sec }^3}x{\text{d}}x + \ln (\sec x + \tan x)} \)     A1

\(2\int {{{\sec }^3}x{\text{d}}x = \left( {\sec x\tan x + \ln (\sec x + \tan x)} \right)} \)     A1

therefore

\(\int {{{\sec }^3}x{\text{d}}x = \frac{1}{2}\left( {\sec x\tan x + \ln (\sec x + \tan x)} \right) + C} \)     AG

[4 marks]

a.ii.

\({\text{int factor}} = {{\text{e}}^{\int {\tan x{\text{d}}x} }}\)     (M1)

\( = {{\text{e}}^{\ln \sec x}}\)     (A1)

\( = \sec x\)     A1

the differential equation can be written as

\(\frac{{\text{d}}}{{{\text{d}}x}}(y\sec x) = 2{\sec ^3}x\)     M1A1

integrating,

\(y\sec x = \sec x\tan x + \ln (\sec x + \tan x) + C\)     A1

putting \(x = 0,{\text{ }}y = 1,\)     M1

\(C = 1\)     A1

the solution is \(y = \cos x\left( {\sec x\tan x + \ln (\sec x + \tan x) + 1} \right)\)     A1

[??? marks]

b.i.

differentiating the differential equation,

\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + \frac{{{\text{d}}y}}{{{\text{d}}x}}\tan x + y{\sec ^2}x = 4{\sec ^2}x\tan x\)     A1A1

\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + (2{\sec ^2}x – y\tan x)\tan x + y{\sec ^2}x = 4{\sec ^2}x\tan x\)     A1

\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + y = 2{\sec ^2}x\tan x\)     AG

[??? marks]

b.ii.

at a point of inflection, \(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 0\) so \(y = 2{\sec ^2}x\tan x\)     (M1)

therefore the point of inflection can be found as the point of intersection of the graphs of \(y = \cos x\left( {\sec x\tan x + \ln (\sec x + \tan x) + 1} \right)\)

and \(y = 2{\sec ^2}x\tan x\)     (M1)

drawing these graphs on the calculator, \(x = 0.605\)     A2

[??? marks]

b.iii.
Scroll to Top