IB DP Further Mathematics – 1.2 Definition and properties of the inverse of a square matrix HL Paper 1

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Let S be the set of matrices given by

\(\left[ \begin{array}{l}
a\\
c
\end{array} \right.\left. \begin{array}{l}
b\\
d
\end{array} \right]\) ; \(a,b,c,d \in \mathbb{R}\), \(ad – bc = 1\)

The relation \(R\) is defined on \(S\) as follows. Given \(\boldsymbol{A}\) , \(\boldsymbol{B} \in S\) , \(\boldsymbol{ARB}\) if and only if there exists \(\boldsymbol{X} \in S\) such that \(\boldsymbol{A} = \boldsymbol{BX}\) .

Show that \(R\) is an equivalence relation.

[8]
a.

The relationship between \(a\) , \(b\) , \(c\) and \(d\) is changed to \(ad – bc = n\) . State, with a reason, whether or not there are any non-zero values of \(n\) , other than \(1\), for which \(R\) is an equivalence relation.

[2]
b.
Answer/Explanation

Markscheme

since \(\boldsymbol{A} = \boldsymbol{AI}\) where \(\boldsymbol{I}\) is the identity     A1

and \(\det (\boldsymbol{I}) = 1\) ,     A1

\(R\) is reflexive

\(\boldsymbol{ARB} \Rightarrow \boldsymbol{A} = \boldsymbol{BX}\) where \(\det (\boldsymbol{X}) = 1\)     M1

it follows that \(\boldsymbol{B} = \boldsymbol{A}{\boldsymbol{X}^{ – 1}}\)     A1

and \(\det ({\boldsymbol{X}^{ – 1}}) = \det{(\boldsymbol{X})^{ – 1}} = 1\)     A1

\(R\) is symmetric

\(\boldsymbol{ARB}\) and \(\boldsymbol{BRC} \Rightarrow \boldsymbol{A} = \boldsymbol{BX}\) and \(\boldsymbol{B} = \boldsymbol{CY}\) where \(\det (\boldsymbol{X}) = \det (\boldsymbol{Y}) = 1\)     M1

it follows that \(\boldsymbol{A} = \boldsymbol{CYX}\)     A1

\(\det (\boldsymbol{YX}) = \det (\boldsymbol{Y})\det (\boldsymbol{X}) = 1\)     A1

\(R\) is transitive

hence \(R\) is an equivalence relation     AG

[8 marks]

a.

for reflexivity, we require \(\boldsymbol{ARA}\) so that \(\boldsymbol{A} = \boldsymbol{AI}\) (for all \(\boldsymbol{A} \in S\) )     M1

since \(\det (\boldsymbol{I}) = 1\) and we require \(\boldsymbol{I} \in S\) the only possibility is \(n = 1\)     A1

[2 marks]

b.

Question

The matrix A is given by A = \(\left( {\begin{array}{*{20}{c}}1&2&1\\1&1&2\\2&3&1\end{array}} \right)\).

(a)     Given that A\(^3\) can be expressed in the form A\(^3 = a\)A\(^2 = b\)A \( + c\)I, determine the values of the constants \(a\), \(b\), \(c\).

(b)     (i)     Hence express A\(^{ – 1}\) in the form A\(^{ – 1} = d\)A\(^2 = e\)A \( + f\)I where \(d,{\text{ }}e,{\text{ }}f \in \mathbb{Q}\).

(ii)     Use this result to determine A\(^{ – 1}\).

Answer/Explanation

Markscheme

(a)     successive powers of A are given by

A\(^2 = \) \(\left( {\begin{array}{*{20}{c}}5&7&6\\6&9&5\\7&{10}&9\end{array}} \right)\)     (M1)A1

A\(^3 = \) \(\left( {\begin{array}{*{20}{c}}{24}&{35}&{25}\\{25}&{36}&{29}\\{35}&{51}&{36}\end{array}} \right)\)     A1

it follows, considering elements in the first rows, that

\(5a + b + c = 24\)

\(7a + 2b = 35\)

\(6a + b = 25\)     M1A1

solving,     (M1)

\((a,{\text{ }}b,{\text{ }}c) = (3,{\text{ }}7,{\text{ }}2)\)     A1

Note: Accept any other three correct equations.

Note: Accept the use of the Cayley–Hamilton Theorem.

[7 marks]

 

(b)     (i)     it has been shown that

A\(^3 = 3\)A\(^2 + 7\)A\( + 2\)I

multiplying by A\(^{ – 1}\),     M1

A\(^2 = 3\)A\( + 7\)I\( + 2\)A\(^{ – 1}\)     A1

whence

A\(^{ – 1} = 0.5\)A\(^2 – 1.5\)A \( – 3.5\)I     A1

(ii)     substituting powers of A,

A\(^{ – 1} = 0.5\)\(\left( {\begin{array}{*{20}{c}}5&7&6\\6&9&5\\7&{10}&9\end{array}} \right) – 1.5\left( {\begin{array}{*{20}{c}}1&2&1\\1&1&2\\2&3&1\end{array}} \right) – 3.5\left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right)\)     M1

=\(\left( {\begin{array}{*{20}{c}}{ – 2.5}&{0.5}&{1.5}\\{1.5}&{ – 0.5}&{ – 0.5}\\{0.5}&{0.5}&{ – 0.5}\end{array}} \right)\)    A1

Note: Follow through their equation in (b)(i).

Note: Line (ii) of (ii) must be seen.

[5 marks]

Question

A matrix M is called idempotent if M\(^2 = \) M.

The idempotent matrix N has the form

N \( = \left( {\begin{array}{*{20}{c}} a&{ – 2a} \\ a&{ – 2a} \end{array}} \right)\)

where \(a \ne 0\).

(i)     Explain why M is a square matrix.

(ii)     Find the set of possible values of det(M).

[4]
a.

(i)     Find the value of \(a\).

(ii)     Find the eigenvalues of N.

(iii)     Find corresponding eigenvectors.

[12]
b.
Answer/Explanation

Markscheme

(i)     M\(^2 = \) MM only exists if the number of columns of M equals the number of rows of M     R1

hence M is square     AG

(ii)     apply the determinant function to both sides     M1

\(\det (\)M\(^2) = \det (\)M\()\)

use the multiplicative property of the determinant

\(\det (\)M\(^2) = \det (\)M\(){\text{ }}\det (\)M\() = \det (\)M\()\)     (M1)

hence \(\det (\)M\() = 0\) or 1     A1

[4 marks]

a.

(i)     attempt to calculate N\(^2\)        M1

obtain \(\left( {\begin{array}{*{20}{c}} { – {a^2}}&{2{a^2}} \\ { – {a^2}}&{2{a^2}} \end{array}} \right)\)        A1

equating to N        M1

to obtain \(a =  – 1\)        A1

(ii)     N \( = \left( {\begin{array}{*{20}{c}} { – 1}&2 \\ { – 1}&2 \end{array}} \right)\)

N \( – \lambda \)I \( = \left( {\begin{array}{*{20}{c}} { – 1 – \lambda }&2 \\ { – 1}&{2 – \lambda } \end{array}} \right)\)        M1

\(( – 1 – \lambda )(2 – \lambda ) + 2 = 0\)       (A1)

\({\lambda ^2} – \lambda  = 0\)       (A1)

\(\lambda \) is 1 or 0        A1

(iii)     let \(\lambda  = 1\)

to obtain \(\left( {\begin{array}{*{20}{c}} { – 1}&2 \\ { – 1}&2 \end{array}} \right)\left( {\begin{array}{*{20}{c}} x \\ y \end{array}} \right) = \left( {\begin{array}{*{20}{c}} x \\ y \end{array}} \right){\text{ or }}\left( {\begin{array}{*{20}{c}} { – 2}&2 \\ { – 1}&1 \end{array}} \right)\left( {\begin{array}{*{20}{c}} x \\ y \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 0 \\ 0 \end{array}} \right)\)        M1

hence eigenvector is \(\left( {\begin{array}{*{20}{c}} x \\ x \end{array}} \right)\)        A1

let \(\lambda  = 0\)

to obtain \(\left( {\begin{array}{*{20}{c}} { – 1}&2 \\ { – 1}&2 \end{array}} \right)\left( {\begin{array}{*{20}{c}} x \\ y \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 0 \\ 0 \end{array}} \right)\)        M1

hence eigenvector is \(\left( {\begin{array}{*{20}{c}} {2y} \\ y \end{array}} \right)\)        A1

Note:     Accept specific eigenvectors.

[12 marks]

b.

Question

The set \(S\) contains the eight matrices of the form\[\left( {\begin{array}{*{20}{c}}
a&0&0\\
0&b&0\\
0&0&c
\end{array}} \right)\]where \(a\), \(b\), \(c\) can each take one of the values \( + 1\) or \( – 1\) .

Show that any matrix of this form is its own inverse.

[3]
a.

Show that \(S\) forms an Abelian group under matrix multiplication.

[9]
b.

Giving a reason, state whether or not this group is cyclic.

[1]
c.
Answer/Explanation

Markscheme

\(\left( {\begin{array}{*{20}{c}}
a&0&0\\
0&b&0\\
0&0&c
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
a&0&0\\
0&b&0\\
0&0&c
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{{a^2}}&0&0\\
0&{{b^2}}&0\\
0&0&{{c^2}}
\end{array}} \right)\)     A1M1

\( = \left( {\begin{array}{*{20}{c}}
1&0&0\\
0&1&0\\
0&0&1
\end{array}} \right)\)     A1

this shows that each matrix is self-inverse

[3 marks]

a.

closure:

\(\left( {\begin{array}{*{20}{c}}
{{a_1}}&0&0\\
0&{{b_1}}&0\\
0&0&{{c_1}}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{{a_2}}&0&0\\
0&{{b_2}}&0\\
0&0&{{c_2}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{{a_1}{a_2}}&0&0\\
0&{{b_1}{b_2}}&0\\
0&0&{{c_1}{c_2}}
\end{array}} \right)\)     M1A1

\( = \left( {\begin{array}{*{20}{c}}
{{a_3}}&0&0\\
0&{{b_3}}&0\\
0&0&{{c_3}}
\end{array}} \right)\)

where each of \({a_3}\), \({b_3}\), \({c_3}\) can only be \( \pm 1\)     A1

this proves closure

identity: the identity matrix is the group identity     A1

inverse: as shown above, every element is self-inverse     A1

associativity: this follows because matrix multiplication is associative     A1

\(S\) is therefore a group     AG

Abelian:

\(\left( {\begin{array}{*{20}{c}}
{{a_2}}&0&0\\
0&{{b_2}}&0\\
0&0&{{c_2}}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{{a_1}}&0&0\\
0&{{b_1}}&0\\
0&0&{{c_1}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{{a_2}{a_1}}&0&0\\
0&{{b_2}{b_1}}&0\\
0&0&{{c_2}{c_1}}
\end{array}} \right)\)     A1

\(\left( {\begin{array}{*{20}{c}}
{{a_1}}&0&0\\
0&{{b_1}}&0\\
0&0&{{c_1}}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{{a_2}}&0&0\\
0&{{b_2}}&0\\
0&0&{{c_2}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{{a_1}{a_2}}&0&0\\
0&{{b_1}{b_2}}&0\\
0&0&{{c_1}{c_2}}
\end{array}} \right)\)     A1

Note: Second line may have been shown whilst proving closure, however a reference to it must be made here.

 

we see that the same result is obtained either way which proves commutativity so that the group is Abelian      R1

[9 marks]

b.

since all elements (except the identity) are of order \(2\), the group is not cyclic (since \(S\) contains \(8\) elements)     R1

[1 mark]

c.
Scroll to Top