IBDP Maths analysis and approaches Topic: AHL 2.12 :The fundamental theorem of algebra HL Paper 1

Question

Factorize \({z^3} + 1\) into a linear and quadratic factor.[2]

a.

Let \(\gamma = \frac{{1 + {\text{i}}\sqrt 3 }}{2}\).

(i)     Show that \(\gamma \) is one of the cube roots of −1.

(ii)     Show that \({\gamma ^2} = \gamma – 1\).

(iii)     Hence find the value of \({(1 – \gamma )^6}\).[9]

b.
Answer/Explanation

Markscheme

using the factor theorem z +1 is a factor     (M1)

\({z^3} + 1 = (z + 1)({z^2} – z + 1)\)     A1

[2 marks]

a.

(i)     METHOD 1

\({z^3} = – 1 \Rightarrow {z^3} + 1 = (z + 1)({z^2} – z + 1) = 0\)     (M1)

solving \({z^2} – z + 1 = 0\)     M1

\(z = \frac{{1 \pm \sqrt {1 – 4} }}{2} = \frac{{1 \pm {\text{i}}\sqrt 3 }}{2}\)     A1

therefore one cube root of −1 is \(\gamma \)     AG

METHOD 2

\({\gamma ^2} = \left( {{{\frac{{1 + i\sqrt 3 }}{2}}^2}} \right) = \frac{{ – 1 + i\sqrt 3 }}{2}\)     M1A1

\({\gamma ^2} = \frac{{ – 1 + i\sqrt 3 }}{2} \times \frac{{1 + i\sqrt 3 }}{2} = \frac{{ – 1 – 3}}{4}\)     A1

= −1     AG

METHOD 3

\(\gamma  = \frac{{1 + i\sqrt 3 }}{2} = {e^{i\frac{\pi }{3}}}\)     M1A1

\({\gamma ^3} = {e^{i\pi }} = – 1\)     A1

 

(ii)     METHOD 1

as \(\gamma \) is a root of \({z^2} – z + 1 = 0\) then \({\gamma ^2} – \gamma + 1 = 0\)     M1R1

\(\therefore {\gamma ^2} = \gamma – 1\)     AG

Note: Award M1 for the use of \({z^2} – z + 1 = 0\) in any way.

Award R1 for a correct reasoned approach.

METHOD 2

\({\gamma ^2} = \frac{{ – 1 + i\sqrt 3 }}{2}\)     M1

\(\gamma – 1 = \frac{{1 + i\sqrt 3 }}{2} – 1 = \frac{{ – 1 + i\sqrt 3 }}{2}\)     A1

 

(iii)     METHOD 1

\({(1 – \gamma )^6} = {( – {\gamma ^2})^6}\)     (M1)

\( = {(\gamma )^{12}}\)     A1

\( = {({\gamma ^3})^4}\)     (M1)

\( = {( – 1)^4}\)

\( = 1\)     A1

METHOD 2

\({(1 – \gamma )^6}\)

\( = 1 – 6\gamma + 15{\gamma ^2} – 20{\gamma ^3} + 15{\gamma ^4} – 6{\gamma ^5} + {\gamma ^6}\)     M1A1

Note: Award M1 for attempt at binomial expansion.

 

use of any previous result e.g. \( = 1 – 6\gamma + 15{\gamma ^2} + 20 – 15\gamma  + 6{\gamma ^2} + 1\)     M1

= 1     A1

Note: As the question uses the word ‘hence’, other methods that do not use previous results are awarded no marks.

[9 marks]

b.

Question

The same remainder is found when \(2{x^3} + k{x^2} + 6x + 32\) and \({x^4} – 6{x^2} – {k^2}x + 9\) are divided by \(x + 1\) . Find the possible values of k .

Answer/Explanation

Markscheme

let \(f(x) = 2{x^3} + k{x^2} + 6x + 32\)

let \(g(x) = {x^4} – 6{x^2} – {k^2}x + 9\)

\(f( – 1) =  – 2 + k – 6 + 32( = 24 + k)\)     A1

\(g( – 1) = 1 – 6 + {k^2} + 9( = 4 + {k^2})\)     A1

\( \Rightarrow 24 + k = 4 + {k^2}\)     M1

\( \Rightarrow {k^2} – k – 20 = 0\)

\( \Rightarrow (k – 5)(k + 4) = 0\)     (M1)

\( \Rightarrow k = 5,\, – 4\)     A1A1

[6 marks]

Question

(i)     Express each of the complex numbers \({z_1} = \sqrt 3  + {\text{i, }}{z_2} = – \sqrt 3  + {\text{i}}\) and \({z_3} = – 2{\text{i}}\) in modulus-argument form.

(ii)     Hence show that the points in the complex plane representing \({z_1}\), \({z_2}\) and \({z_3}\) form the vertices of an equilateral triangle.

(iii)     Show that \({\text{z}}_1^{3n} + z_2^{3n} = 2z_3^{3n}\) where \(n \in \mathbb{N}\).[9]

a.

(i)     State the solutions of the equation \({z^7} = 1\) for \(z \in \mathbb{C}\), giving them in modulus-argument form.

(ii)     If w is the solution to \({z^7} = 1\) with least positive argument, determine the argument of 1 + w. Express your answer in terms of \(\pi \).

(iii)     Show that \({z^2} – 2z\cos \left( {\frac{{2\pi }}{7}} \right) + 1\) is a factor of the polynomial \({z^7} – 1\). State the two other quadratic factors with real coefficients.[9]

b.
Answer/Explanation

Markscheme

(i)     \({z_1} = 2{\text{cis}}\left( {\frac{\pi }{6}} \right),{\text{ }}{z_2} = 2{\text{cis}}\left( {\frac{{5\pi }}{6}} \right),{\text{ }}{z_3} = 2{\text{cis}}\left( { – \frac{\pi }{2}} \right){\text{ or }}2{\text{cis}}\left( {\frac{{3\pi }}{2}} \right)\)     A1A1A1

Note: Accept modulus and argument given separately, or the use of exponential (Euler) form.

 Note: Accept arguments given in rational degrees, except where exponential form is used.

(ii)     the points lie on a circle of radius 2 centre the origin     A1

differences are all \(\frac{{2\pi }}{3}(\bmod 2\pi )\)     A1

\( \Rightarrow \) points equally spaced \( \Rightarrow \) triangle is equilateral     R1AG

Note: Accept an approach based on a clearly marked diagram.

(iii)     \({\text{z}}_1^{3n} + z_2^{3n} = {2^{3n}}{\text{cis}}\left( {\frac{{n\pi }}{2}} \right) + {2^{3n}}{\text{cis}}\left( {\frac{{5n\pi }}{2}} \right)\)     M1

\( = 2 \times {2^{3n}}{\text{cis}}\left( {\frac{{n\pi }}{2}} \right)\)     A1

\(2z_3^{3n} = 2 \times {2^{3n}}{\text{cis}}\left( {\frac{{9n\pi }}{2}} \right) = 2 \times {2^{3n}}{\text{cis}}\left( {\frac{{n\pi }}{2}} \right)\)     A1AG

[9 marks]

a.

(i)     attempt to obtain seven solutions in modulus argument form     M1

\(z = {\text{cis}}\left( {\frac{{2k\pi }}{7}} \right),{\text{ }}k = 0,{\text{ }}1 \ldots 6\)     A1

(ii)     w has argument \(\frac{{2\pi }}{7}\) and 1 + w has argument \(\phi \),

then \(\tan (\phi ) = \frac{{\sin \left( {\frac{{2\pi }}{7}} \right)}}{{1 + \cos \left( {\frac{{2\pi }}{7}} \right)}}\)     M1

\( = \frac{{2\sin \left( {\frac{\pi }{7}} \right)\cos \left( {\frac{\pi }{7}} \right)}}{{2{{\cos }^2}\left( {\frac{\pi }{7}} \right)}}\)     A1

\( = \tan \left( {\frac{\pi }{7}} \right) \Rightarrow \phi  = \frac{\pi }{7}\)     A1

Note: Accept alternative approaches.

(iii)     since roots occur in conjugate pairs,     (R1)

\({z^7} – 1\) has a quadratic factor \(\left( {z – {\text{cis}}\left( {\frac{{2\pi }}{7}} \right)} \right) \times \left( {z – {\text{cis}}\left( { – \frac{{2\pi }}{7}} \right)} \right)\)     A1

\( = {z^2} – 2z\cos \left( {\frac{{2\pi }}{7}} \right) + 1\)     AG

other quadratic factors are \({z^2} – 2z\cos \left( {\frac{{4\pi }}{7}} \right) + 1\)     A1

and \({z^2} – 2z\cos \left( {\frac{{6\pi }}{7}} \right) + 1\)     A1

[9 marks]

b.
Scroll to Top