IB DP Maths Topic 4.1 Algebraic and geometric approaches to magnitude of a vector, |v| SL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

In this question, distance is in metres.

Toy airplanes fly in a straight line at a constant speed. Airplane 1 passes through a point A.

Its position, p seconds after it has passed through A, is given by \(\left( {\begin{array}{*{20}{c}}
x\\
y\\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
3\\
{ – 4}\\
0
\end{array}} \right) + p\left( {\begin{array}{*{20}{c}}
{ – 2}\\
3\\
1
\end{array}} \right)\) .

(i)     Write down the coordinates of A.

(ii)    Find the speed of the airplane in \({\text{m}}{{\text{s}}^{ – 1}}\).

[4]
a(i) and (ii).

After seven seconds the airplane passes through a point B.

(i)     Find the coordinates of B.

(ii)    Find the distance the airplane has travelled during the seven seconds.

[5]
b(i) and (ii).

Airplane 2 passes through a point C. Its position q seconds after it passes through C is given by \(\left( {\begin{array}{*{20}{c}}
x\\
y\\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
2\\
{ – 5}\\
8
\end{array}} \right) + q\left( {\begin{array}{*{20}{c}}
{ – 1}\\
2\\
a
\end{array}} \right),a \in \mathbb{R}\) .

The angle between the flight paths of Airplane 1 and Airplane 2 is \({40^ \circ }\) . Find the two values of a.

[7]
c.
Answer/Explanation

Markscheme

(i) (3, \( – 4\), 0)     A1     N1

(ii) choosing velocity vector \(\left( {\begin{array}{*{20}{c}}
{ – 2}\\
3\\
1
\end{array}} \right)\)     (M1)

finding magnitude of velocity vector     (A1)

e.g. \(\sqrt {{{( – 2)}^2} + {3^2} + {1^2}} \) , \(\sqrt {4 + 9 + 1} \)

speed \(= 3.74\) \(\left( {\sqrt {14} } \right)\)     A1     N2

[4 marks]

a(i) and (ii).

(i) substituting \(p = 7\)     (M1)

\({\text{B}} = ( – 11{\text{, }}17{\text{, }}7)\)     A1     N2

(ii) METHOD 1

appropriate method to find \(\overrightarrow {{\rm{AB}}} \) or \(\overrightarrow {{\rm{BA}}} \)     (M1)

e.g. \(\overrightarrow {{\rm{AO}}}  + \overrightarrow {{\rm{OB}}} \) , \({\rm{A}} – {\rm{B}}\)

\(\overrightarrow {{\rm{AB}}}  = \left( {\begin{array}{*{20}{c}}
{ – 14}\\
{21}\\
7
\end{array}} \right)\) or \(\overrightarrow {{\rm{BA}}}  = \left( {\begin{array}{*{20}{c}}
{14}\\
{ – 21}\\
{ – 7}
\end{array}} \right)\)     (A1)

distance \(= 26.2\) \(\left( {7\sqrt {14} } \right)\)     A1     N3

METHOD 2

evidence of applying distance is speed × time     (M2)

e.g. \(3.74 \times 7\)

distance \(= 26.2\) \(\left( {7\sqrt {14} } \right)\)     A1     N3

METHOD 3

attempt to find AB2 , AB     (M1)

e.g. \({(3 – ( – 11))^2} + {( – 4 – 17)^2} + (0 – 7){)^2}\) , \(\sqrt {{{(3 – ( – 11))}^2} + {{( – 4 – 17)}^2} + (0 – 7){)^2}} \)

AB2 \(= 686\), AB \(= \sqrt {686} \)     (A1)

distance AB \(= 26.2\) \(\left( {7\sqrt {14} } \right)\)     A1     N3

[5 marks]

b(i) and (ii).

correct direction vectors \(\left( {\begin{array}{*{20}{c}}
{ – 2}\\
3\\
1
\end{array}} \right)\) and \(\left( {\begin{array}{*{20}{c}}
{ – 1}\\
2\\
a
\end{array}} \right)\)     (A1)(A1)

\(\left| {\begin{array}{*{20}{c}}
{ – 1}\\
2\\
a
\end{array}} \right| = \sqrt {{a^2} + 5} \) , \(\left( {\begin{array}{*{20}{c}}
{ – 2}\\
3\\
1
\end{array}} \right) \bullet \left( {\begin{array}{*{20}{c}}
{ – 1}\\
2\\
a
\end{array}} \right) = a + 8\)      (A1)(A1)

substituting     M1

e.g. \(\cos {40^ \circ } = \frac{{a + 8}}{{\sqrt {14} \sqrt {{a^2} + 5} }}\)

\(a = 3.21\) , \(a = – 0.990\)     A1A1     N3

[7 marks]

c.

Examiners report

Many candidates demonstrated a good understanding of the vector equation of a line and its application to a kinematics problem by correctly answering the first two parts of this question.

a(i) and (ii).

Many candidates demonstrated a good understanding of the vector equation of a line and its application to a kinematics problem by correctly answering the first two parts of this question.

Some knew that speed and distance were magnitudes of vectors but chose the wrong vectors to calculate magnitudes.

b(i) and (ii).

Very few candidates were able to get the two correct answers in (c) even if they set up the equation correctly. Much contorted algebra was seen and little evidence of using the GDC to solve the equation. Many made simple algebraic errors by combining unlike terms in working with the scalar product (often writing \(8a\) rather than \(8 + a\) ) or the magnitude (often writing \(5{a^2}\) rather than \(5 + {a^2}\) ).

c.

Question

Let \(u = 6i + 3j + 6k\) and \(v = 2i + 2j + k\).

Find

(i)     \(u \bullet v\);

(ii)     \(\left| {{u}} \right|\);

(iii)     \(\left| {{v}} \right|\).

[5]
a.

Find the angle between \({{u}}\) and \({{v}}\).

[2]
b.
Answer/Explanation

Markscheme

(i)     correct substitution     (A1)

eg\(\;\;\;6 \times 2 + 3 \times 2 + 6 \times 1\)

\(u \bullet v = 24\)     A1     N2

(ii)     correct substitution into magnitude formula for \({{u}}\) or \({{v}}\)     (A1)

eg\(\;\;\;\sqrt {{6^2} + {3^2} + {6^2}} ,{\text{ }}\sqrt {{2^2} + {2^2} + {1^2}} \), correct value for \(\left| {{v}} \right|\)

\(\left| {{u}} \right| = 9\)     A1     N2

(iii)     \(\left| {{v}} \right| = 3\)     A1     N1

[5 marks]

a.

correct substitution into angle formula     (A1)

eg\(\;\;\;\frac{{24}}{{9 \times 3}},{\text{ }}0.\bar 8\)

\(0.475882,{\text{ }}27.26604^\circ \)     A1     N2

\(0.476,{\text{ }}27.3^\circ \)

[2 marks]

Total [7 marks]

b.

Question

Two points P and Q have coordinates (3, 2, 5) and (7, 4, 9) respectively.

Let \({\mathop {{\text{PR}}}\limits^ \to  }\) = 6i − j + 3k.

Find \(\mathop {{\text{PQ}}}\limits^ \to \).

[2]
a.i.

Find \(\left| {\mathop {{\text{PQ}}}\limits^ \to } \right|\).

[2]
a.ii.

Find the angle between PQ and PR.

[4]
b.

Find the area of triangle PQR.

[2]
c.

Hence or otherwise find the shortest distance from R to the line through P and Q.

[3]
d.
Answer/Explanation

Markscheme

valid approach (M1)

eg (7, 4, 9) − (3, 2, 5) A − B

\(\mathop {{\text{PQ}}}\limits^ \to = \) 4i + 2j + 4k \(\left( { = \left( \begin{gathered}
4 \hfill \\
2 \hfill \\
4 \hfill \\
\end{gathered} \right)} \right)\) A1 N2

[2 marks]

a.i.

correct substitution into magnitude formula (A1)
eg \(\sqrt {{4^2} + {2^2} + {4^2}} \)

\(\left| {\mathop {{\text{PQ}}}\limits^ \to } \right| = 6\) A1 N2

[2 marks]

a.ii.

finding scalar product and magnitudes (A1)(A1)

scalar product = (4 × 6) + (2 × (−1) + (4 × 3) (= 34)

magnitude of PR = \(\sqrt {36 + 1 + 9} = \left( {6.782} \right)\)

correct substitution of their values to find cos \({\text{Q}}\mathop {\text{P}}\limits^ \wedge {\text{R}}\) M1

eg cos \({\text{Q}}\mathop {\text{P}}\limits^ \wedge {\text{R}}\,\,{\text{ = }}\frac{{24 – 2 + 12}}{{\left( 6 \right) \times \left( {\sqrt {46} } \right)}},\,\,0.8355\)

0.581746

\({\text{Q}}\mathop {\text{P}}\limits^ \wedge {\text{R}}\) = 0.582 radians or \({\text{Q}}\mathop {\text{P}}\limits^ \wedge {\text{R}}\) = 33.3° A1 N3

[4 marks]

b.

correct substitution (A1)
eg \(\frac{1}{2} \times \left| {\mathop {{\text{PQ}}}\limits^ \to } \right| \times \left| {\mathop {{\text{PR}}}\limits^ \to } \right| \times \,\,{\text{sin}}\,P,\,\,\frac{1}{2} \times 6 \times \sqrt {46} \times \,\,{\text{sin}}\,0.582\)

area is 11.2 (sq. units) A1 N2

[2 marks]

c.

recognizing shortest distance is perpendicular distance from R to line through P and Q (M1)

eg sketch, height of triangle with base \(\left[ {{\text{PQ}}} \right],\,\,\frac{1}{2} \times 6 \times h,\,\,{\text{sin}}\,33.3^\circ = \frac{h}{{\sqrt {46} }}\)

correct working (A1)

eg \(\frac{1}{2} \times 6 \times d = 11.2,\,\,\left| {\mathop {{\text{PR}}}\limits^ \to } \right| \times \,\,{\text{sin}}\,P,\,\,\sqrt {46} \times \,\,{\text{sin}}\,33.3^\circ \)

3.72677

distance = 3.73 (units) A1 N2

[3 marks]

d.
Scroll to Top