IB DP Maths Topic 5.4 Scatter diagrams; lines of best fit. SL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

The price of a used car depends partly on the distance it has travelled. The following table shows the distance and the price for seven cars on 1 January 2010.

M16/5/MATME/SP2/ENG/TZ2/08

The relationship between \(x\) and \(y\) can be modelled by the regression equation \(y = ax + b\).

On 1 January 2010, Lina buys a car which has travelled \(11\,000{\text{ km}}\).

The price of a car decreases by 5% each year.

Lina will sell her car when its price reaches \(10\,000\) dollars.

(i)     Find the correlation coefficient.

(ii)     Write down the value of \(a\) and of \(b\).

[4]
a.

Use the regression equation to estimate the price of Lina’s car, giving your answer to the nearest 100 dollars.

[3]
b.

Calculate the price of Lina’s car after 6 years.

[4]
c.

Find the year when Lina sells her car.

[4]
d.
Answer/Explanation

Markscheme

Note:     There may be slight differences in answers, depending on which values candidates carry through in subsequent parts. Accept answers that are consistent with their working.

(i)     valid approach (M1)

eg\(\,\,\,\,\,\)correct value for \(r\) (or for \(a\) or \(b\) seen in (ii))

\( – 0.994347\)

\(r =  – 0.994\)     A1     N2

(ii)     \( – 1.58095,{\text{ }}33480.3\)

\(a =  – 1.58,{\text{ }}b = 33500\)     A1A1     N2

[4 marks]

a.

Note:     There may be slight differences in answers, depending on which values candidates carry through in subsequent parts. Accept answers that are consistent with their working.

correct substitution into their regression equation

eg\(\,\,\,\,\,\)\( – 1.58095(11000){\text{ }} + 33480.3\)     (A1)

\(16\,089.85{\text{ }}(16\,120{\text{ from 3sf}})\)    (A1)

\({\text{price}} = 16\,100{\text{ }}({\text{dollars}})\) (must be rounded to the nearest 100 dollars)     A1     N3

[3 marks]

b.

Note:     There may be slight differences in answers, depending on which values candidates carry through in subsequent parts. Accept answers that are consistent with their working.

METHOD 1

valid approach     (M1)

eg\(\,\,\,\,\,\)\(P \times {({\text{rate}})^t}\)

\({\text{rate}} = 0.95\) (may be seen in their expression)     (A1)

correct expression     (A1)

eg\(\,\,\,\,\,\)\(16100 \times {0.95^6}\)

\(11\,834.97\)

\(11\,800{\text{ }}({\text{dollars}})\)    A1     N2

METHOD 2

attempt to find all six terms     (M1)

eg\(\,\,\,\,\,\)\(\left( {\left( {(16\,100 \times 0.95) \times 0.95} \right) \ldots } \right) \times 0.95\), table of values

5 correct values (accept values that round correctly to the nearest dollar)

\(15\,295,{\text{ }}14\,530,{\text{ }}13\,804,{\text{ }}13\,114,{\text{ }}12\,458\)    A2

\(11\,835\)

\(11\,800{\text{ }}({\text{dollars}})\)     A1     N2

[4 marks]

c.

Note:     There may be slight differences in answers, depending on which values candidates carry through in subsequent parts. Accept answers that are consistent with their working.

METHOD 1

correct equation     (A1)

eg\(\,\,\,\,\,\)\(16\,100 \times {0.95^x}{\text{ = }}10\,000\)

valid attempt to solve     (M1)

eg\(\,\,\,\,\,\)M16/5/MATME/SP2/ENG/TZ2/08.d/M, using logs

9.28453     (A1)

year 2019     A1     N2

METHOD 2

valid approach using table of values     (M1)

both crossover values (accept values that round correctly to the nearest dollar)     A2

eg\(\,\,\,\,\,\)\({\text{P}} = 10\,147{\text{ }}({\text{1 Jan 2019}}),{\text{ P}} = 9\,639.7{\text{ }}({\text{1 Jan 2020}})\)

year 2019     A1     N2

[4 marks]

d.

Question

Adam is a beekeeper who collected data about monthly honey production in his bee hives. The data for six of his hives is shown in the following table.

N17/5/MATME/SP2/ENG/TZ0/08

The relationship between the variables is modelled by the regression line with equation \(P = aN + b\).

Adam has 200 hives in total. He collects data on the monthly honey production of all the hives. This data is shown in the following cumulative frequency graph.

N17/5/MATME/SP2/ENG/TZ0/08.c.d.e

Adam’s hives are labelled as low, regular or high production, as defined in the following table.

N17/5/MATME/SP2/ENG/TZ0/08.c.d.e_02

Adam knows that 128 of his hives have a regular production.

Write down the value of \(a\) and of \(b\).

[3]
a.

Use this regression line to estimate the monthly honey production from a hive that has 270 bees.

[2]
b.

Write down the number of low production hives.

[1]
c.

Find the value of \(k\);

[3]
d.i.

Find the number of hives that have a high production.

[2]
d.ii.

Adam decides to increase the number of bees in each low production hive. Research suggests that there is a probability of 0.75 that a low production hive becomes a regular production hive. Calculate the probability that 30 low production hives become regular production hives.

[3]
e.
Answer/Explanation

Markscheme

evidence of setup     (M1)

eg\(\,\,\,\,\,\)correct value for \(a\) or \(b\)

\(a = 6.96103,{\text{ }}b =  – 454.805\)

\(a = 6.96,{\text{ }}b =  – 455{\text{ (accept }}6.96x – 455)\)     A1A1     N3

[3 marks]

a.

substituting \(N = 270\) into their equation     (M1)

eg\(\,\,\,\,\,\)\(6.96(270) – 455\)

1424.67

\(P = 1420{\text{ (g)}}\)     A1     N2

[2 marks]

b.

40 (hives)     A1     N1

[1 mark]

c.

valid approach     (M1)

eg\(\,\,\,\,\,\)\(128 + 40\)

168 hives have a production less than \(k\)     (A1)

\(k = 1640\)     A1     N3

[3 marks]

d.i.

valid approach     (M1)

eg\(\,\,\,\,\,\)\(200 – 168\)

32 (hives)     A1     N2

[2 marks]

d.ii.

recognize binomial distribution (seen anywhere)     (M1)

eg\(\,\,\,\,\,\)\(X \sim {\text{B}}(n,{\text{ }}p),{\text{ }}\left( {\begin{array}{*{20}{c}} n \\ r \end{array}} \right){p^r}{(1 – p)^{n – r}}\)

correct values     (A1)

eg\(\,\,\,\,\,\)\(n = 40\) (check FT) and \(p = 0.75\) and \(r = 30,{\text{ }}\left( {\begin{array}{*{20}{c}} {40} \\ {30} \end{array}} \right){0.75^{30}}{(1 – 0.75)^{10}}\)

0.144364

0.144     A1     N2

[3 marks]

e.

Question

The following table shows values of ln x and ln y.

The relationship between ln x and ln y can be modelled by the regression equation ln y = a ln x + b.

Find the value of a and of b.

[3]
a.

Use the regression equation to estimate the value of y when x = 3.57.

[3]
b.

The relationship between x and y can be modelled using the formula y = kxn, where k ≠ 0 , n ≠ 0 , n ≠ 1.

By expressing ln y in terms of ln x, find the value of n and of k.

[7]
c.
Answer/Explanation

Markscheme

valid approach      (M1)

eg  one correct value

−0.453620, 6.14210

a = −0.454, b = 6.14      A1A1 N3

[3 marks]

a.

correct substitution     (A1)

eg   −0.454 ln 3.57 + 6.14

correct working     (A1)

eg  ln y = 5.56484

261.083 (260.409 from 3 sf)

y = 261, (y = 260 from 3sf)       A1 N3

Note: If no working shown, award N1 for 5.56484.
If no working shown, award N2 for ln y = 5.56484.

[3 marks]

b.

METHOD 1

valid approach for expressing ln y in terms of ln x      (M1)

eg  \({\text{ln}}\,y = {\text{ln}}\,\left( {k{x^n}} \right),\,\,{\text{ln}}\,\left( {k{x^n}} \right) = a\,{\text{ln}}\,x + b\)

correct application of addition rule for logs      (A1)

eg  \({\text{ln}}\,k + {\text{ln}}\,\left( {{x^n}} \right)\)

correct application of exponent rule for logs       A1

eg  \({\text{ln}}\,k + n\,{\text{ln}}\,x\)

comparing one term with regression equation (check FT)      (M1)

eg  \(n = a,\,\,b = {\text{ln}}\,k\)

correct working for k      (A1)

eg  \({\text{ln}}\,k = 6.14210,\,\,\,k = {e^{6.14210}}\)

465.030

\(n =  – 0.454,\,\,k = 465\) (464 from 3sf)     A1A1 N2N2

METHOD 2

valid approach      (M1)

eg  \({e^{{\text{ln}}\,y}} = {e^{a\,{\text{ln}}\,x + b}}\)

correct use of exponent laws for \({e^{a\,{\text{ln}}\,x + b}}\)     (A1)

eg  \({e^{a\,{\text{ln}}\,x}} \times {e^b}\)

correct application of exponent rule for \(a\,{\text{ln}}\,x\)     (A1)

eg  \({\text{ln}}\,{x^a}\)

correct equation in y      A1

eg  \(y = {x^a} \times {e^b}\)

comparing one term with equation of model (check FT)      (M1)

eg  \(k = {e^b},\,\,n = a\)

465.030

\(n =  – 0.454,\,\,k = 465\) (464 from 3sf)     A1A1 N2N2

METHOD 3

valid approach for expressing ln y in terms of ln x (seen anywhere)      (M1)

eg  \({\text{ln}}\,y = {\text{ln}}\,\left( {k{x^n}} \right),\,\,{\text{ln}}\,\left( {k{x^n}} \right) = a\,{\text{ln}}\,x + b\)

correct application of exponent rule for logs (seen anywhere)      (A1)

eg  \({\text{ln}}\,\left( {{x^a}} \right) + b\)

correct working for b (seen anywhere)      (A1)

eg  \(b = {\text{ln}}\,\left( {{e^b}} \right)\)

correct application of addition rule for logs      A1

eg  \({\text{ln}}\,\left( {{e^b}{x^a}} \right)\)

comparing one term with equation of model (check FT)     (M1)

eg  \(k = {e^b},\,\,n = a\)

465.030

\(n =  – 0.454,\,\,k = 465\) (464 from 3sf)     A1A1 N2N2

[7 marks]

c.

Question

The following table shows the mean weight, y kg , of children who are x years old.

The relationship between the variables is modelled by the regression line with equation \(y = ax + b\).

Find the value of a and of b.

[3]
a.i.

Write down the correlation coefficient.

[1]
a.ii.

Use your equation to estimate the mean weight of a child that is 1.95 years old.

[2]
b.
Answer/Explanation

Markscheme

valid approach      (M1)

eg correct value for a or b (or for r seen in (ii))

a = 1.91966  b = 7.97717

a = 1.92,  b = 7.98      A1A1 N3

[3 marks]

a.i.

0.984674

= 0.985      A1 N1

[1 mark]

a.ii.

correct substitution into their equation      (A1)
eg  1.92 × 1.95 + 7.98

11.7205

11.7 (kg)      A1 N2

[2 marks]

b.
Scroll to Top