IB Mathematics SL 5.8 Local maximum and minimum values AA SL Paper 1- Exam Style Questions- New Syllabus
A circle with equation \( x^2 + y^2 = 9 \) has centre \( (0, 0) \) and radius 3.
A triangle, \( PQR \), is inscribed in the circle with vertices at \( P(-3, 0) \), \( Q(x, y) \), and \( R(x, -y) \), where \( Q \) and \( R \) are variable points in the first and fourth quadrants respectively.
Part (a):
Show that \( y = \sqrt{9 – x^2} \) for point \( Q \). [2]
Part (b):
Find an expression for \( A \), the area of triangle \( PQR \), in terms of \( x \). [3]
Part (c):
Show that \( \frac{dA}{dx} = \frac{9 – 3x – 2x^2}{\sqrt{9 – x^2}} \). [4]
Part (d):
Find the y-coordinate of \( R \) such that \( A \) is a maximum. [6]
▶️ Answer/Explanation
Part (a)
Since point \( Q(x, y) \) lies on the circle \( x^2 + y^2 = 9 \):
\[ y^2 = 9 – x^2 \]
Since \( Q \) is in the first quadrant (\( y > 0 \)):
\[ y = \sqrt{9 – x^2} \]
Answer: \( y = \sqrt{9 – x^2} \)
Part (b)
Find the area \( A \) of triangle \( PQR \) with vertices \( P(-3, 0) \), \( Q(x, \sqrt{9 – x^2}) \), \( R(x, -\sqrt{9 – x^2}) \).
Method 1: Determinant Formula
Use the formula for the area of a triangle with vertices \( (x_1, y_1) \), \( (x_2, y_2) \), \( (x_3, y_3) \):
\[ A = \frac{1}{2} \left| x_1 (y_2 – y_3) + x_2 (y_3 – y_1) + x_3 (y_1 – y_2) \right| \]
Substitute coordinates:
\[ A = \frac{1}{2} \left| (-3) (\sqrt{9 – x^2} – (-\sqrt{9 – x^2})) + x (-\sqrt{9 – x^2} – 0) + x (0 – \sqrt{9 – x^2}) \right| \]
\[ = \frac{1}{2} \left| (-3) (2\sqrt{9 – x^2}) + x (-\sqrt{9 – x^2}) + x (-\sqrt{9 – x^2}) \right| \]
\[ = \frac{1}{2} \left| -6\sqrt{9 – x^2} – 2x \sqrt{9 – x^2} \right| = \frac{1}{2} \left| (-6 – 2x) \sqrt{9 – x^2} \right| \]
Since \( x \geq 0 \), \( -6 – 2x < 0 \), so:
\[ A = \frac{1}{2} (6 + 2x) \sqrt{9 – x^2} = (3 + x) \sqrt{9 – x^2} \]
Method 2: Base and Height
Base \( QR \): Distance between \( Q(x, \sqrt{9 – x^2}) \) and \( R(x, -\sqrt{9 – x^2}) \):
\[ QR = \sqrt{(x – x)^2 + (\sqrt{9 – x^2} – (-\sqrt{9 – x^2}))^2} = \sqrt{(2\sqrt{9 – x^2})^2} = 2\sqrt{9 – x^2} \]
Height: Perpendicular distance from \( P(-3, 0) \) to line \( QR \). Line \( QR \) is horizontal at \( x = x \), so height is the x-distance from \( x = -3 \) to \( x \):
\[ h = x – (-3) = x + 3 \]
\[ A = \frac{1}{2} \cdot \text{base} \cdot \text{height} = \frac{1}{2} \cdot 2\sqrt{9 – x^2} \cdot (x + 3) = (3 + x) \sqrt{9 – x^2} \]
Answer: \( A = (3 + x) \sqrt{9 – x^2} \)
Part (c)
Show \( \frac{dA}{dx} = \frac{9 – 3x – 2x^2}{\sqrt{9 – x^2}} \).
Method 1: Product Rule
For \( A = (3 + x) \sqrt{9 – x^2} \), let \( u = 3 + x \), \( v = \sqrt{9 – x^2} \).
\[ \frac{du}{dx} = 1, \quad \frac{dv}{dx} = \frac{d}{dx} (9 – x^2)^{1/2} = \frac{1}{2} (9 – x^2)^{-1/2} (-2x) = -\frac{x}{\sqrt{9 – x^2}} \]
Apply product rule: \( \frac{dA}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \):
\[ \frac{dA}{dx} = (3 + x) \left( -\frac{x}{\sqrt{9 – x^2}} \right) + \sqrt{9 – x^2} \cdot 1 \]
\[ = -\frac{x (3 + x)}{\sqrt{9 – x^2}} + \sqrt{9 – x^2} \]
Combine over common denominator:
\[ = \frac{-x (3 + x) + (9 – x^2)}{\sqrt{9 – x^2}} = \frac{-3x – x^2 + 9 – x^2}{\sqrt{9 – x^2}} = \frac{9 – 3x – 2x^2}{\sqrt{9 – x^2}} \]
Method 2: Chain Rule with Substitution
Express \( A = (3 + x) y \), where \( y = \sqrt{9 – x^2} \), so \( \frac{dy}{dx} = -\frac{x}{\sqrt{9 – x^2}} \).
\[ \frac{dA}{dx} = \frac{dA}{dy} \cdot \frac{dy}{dx} \]
\[ \frac{dA}{dy} = x + 3, \quad \frac{dy}{dx} = -\frac{x}{\sqrt{9 – x^2}} \]
\[ \frac{dA}{dx} = (x + 3) \left( -\frac{x}{\sqrt{9 – x^2}} \right) + \sqrt{9 – x^2} \cdot 1 = \frac{-x (x + 3) + (9 – x^2)}{\sqrt{9 – x^2}} \]
\[ = \frac{9 – 3x – 2x^2}{\sqrt{9 – x^2}} \]
Answer: \( \frac{dA}{dx} = \frac{9 – 3x – 2x^2}{\sqrt{9 – x^2}} \)
Part (d)
Find the y-coordinate of \( R \) that maximizes \( A \). Set \( \frac{dA}{dx} = 0 \):
\[ \frac{9 – 3x – 2x^2}{\sqrt{9 – x^2}} = 0 \]
Since \( \sqrt{9 – x^2} \neq 0 \) for \( x \in (-3, 3) \), solve:
\[ 9 – 3x – 2x^2 = 0 \implies 2x^2 + 3x – 9 = 0 \]
Quadratic formula: \( x = \frac{-b \pm \sqrt{b^2 – 4ac}}{2a} \), with \( a = 2 \), \( b = 3 \), \( c = -9 \):
\[ x = \frac{-3 \pm \sqrt{3^2 – 4 \cdot 2 \cdot (-9)}}{2 \cdot 2} = \frac{-3 \pm \sqrt{9 + 72}}{4} = \frac{-3 \pm \sqrt{81}}{4} = \frac{-3 \pm 9}{4} \]
\[ x = \frac{6}{4} = \frac{3}{2}, \quad x = \frac{-12}{4} = -3 \]
Since \( Q(x, y) \) is in the first quadrant (\( x > 0 \)), take \( x = \frac{3}{2} \).
Find \( y \) for \( Q \):
\[ y = \sqrt{9 – \left(\frac{3}{2}\right)^2} = \sqrt{9 – \frac{9}{4}} = \sqrt{\frac{36}{4} – \frac{9}{4}} = \sqrt{\frac{27}{4}} = \frac{\sqrt{27}}{2} = \frac{3\sqrt{3}}{2} \]
Since \( R(x, -y) \), the y-coordinate of \( R \) is:
\[ y_R = -\frac{3\sqrt{3}}{2} \]
Verify maximum using second derivative (optional):
\[ \frac{dA}{dx} = \frac{9 – 3x – 2x^2}{\sqrt{9 – x^2}} \]
Use quotient rule for \( \frac{d^2 A}{dx^2} \), but first derivative test suffices per markscheme. At \( x = \frac{3}{2} \), \( \frac{dA}{dx} = 0 \). Test points: For \( x < \frac{3}{2} \), e.g., \( x = 1 \), numerator \( 9 – 3 \cdot 1 – 2 \cdot 1^2 = 4 > 0 \); for \( x > \frac{3}{2} \), e.g., \( x = 2 \), \( 9 – 3 \cdot 2 – 2 \cdot 2^2 = -5 < 0 \). Thus, \( x = \frac{3}{2} \) is a maximum.
Answer: y-coordinate of \( R \) is \( -\frac{3\sqrt{3}}{2} \)
The function \( h \) is defined by \( h(x) = 2x e^x + 3 \), for \( x \in \mathbb{R} \). The following diagram shows part of the graph of \( h \), which has a local minimum at point \( A \).
Part (a):
Find the value of the y-intercept. [1]
Part (b):
Find \( h'(x) \). [2]
Part (c):
Hence, find the coordinates of \( A \). [3]
Part (d):
(i) Show that \( h”(x) = (2x + 4)e^x \). [2]
(ii) Find the values of \( x \) for which the graph of \( h \) is concave-up. [2]
▶️ Answer/Explanation
Part (a)
Find the y-intercept of \( h(x) = 2x e^x + 3 \).
Substitute \( x = 0 \):
\[ h(0) = 2 \cdot 0 \cdot e^0 + 3 = 0 + 3 = 3 \]
Answer: The y-intercept is \( 3 \) (or \( (0, 3) \)).
Part (b)
Find \( h'(x) \).
For \( h(x) = 2x e^x + 3 \), differentiate using the product rule for \( 2x e^x \).
Let \( u = 2x \), \( v = e^x \), so \( u’ = 2 \), \( v’ = e^x \).
\[ \frac{d}{dx} (2x e^x) = u’ v + u v’ = 2 e^x + 2x e^x \]
The constant term: \( \frac{d}{dx} (3) = 0 \).
\[ h'(x) = 2 e^x + 2x e^x = 2 e^x (1 + x) \]
Answer: \( h'(x) = 2 e^x (1 + x) \)
Part (c)
Find the coordinates of the local minimum \( A \).
At a local minimum, \( h'(x) = 0 \).
\[ 2 e^x (1 + x) = 0 \]
Since \( e^x > 0 \), solve:
\[ 1 + x = 0 \implies x = -1 \]
Find the y-coordinate by substituting \( x = -1 \) into \( h(x) \):
\[ h(-1) = 2 (-1) e^{-1} + 3 = -\frac{2}{e} + 3 \]
Answer: The coordinates of \( A \) are \( \left( -1, 3 – \frac{2}{e} \right) \).
Part (d)(i)
Show that \( h”(x) = (2x + 4) e^x \).
From (b), \( h'(x) = 2 e^x + 2x e^x \). Differentiate again:
\[ h”(x) = \frac{d}{dx} \left( 2 e^x + 2x e^x \right) \]
For \( 2 e^x \), the derivative is \( 2 e^x \).
For \( 2x e^x \), use the product rule again: let \( u = 2x \), \( v = e^x \), so \( u’ = 2 \), \( v’ = e^x \).
\[ \frac{d}{dx} (2x e^x) = 2 e^x + 2x e^x \]
\[ h”(x) = 2 e^x + (2 e^x + 2x e^x) = 2 e^x + 2 e^x + 2x e^x = (2 + 2 + 2x) e^x = (2x + 4) e^x \]
Answer: \( h”(x) = (2x + 4) e^x \)
Part (d)(ii)
Find the values of \( x \) for which the graph of \( h \) is concave-up (\( h”(x) > 0 \)).
From (d)(i), \( h”(x) = (2x + 4) e^x \).
Since \( e^x > 0 \) for all \( x \), solve:
\[ 2x + 4 > 0 \implies 2x > -4 \implies x > -2 \]
Answer: The graph is concave-up for \( x > -2 \).