IB DP Maths Topic 6.3 Local maximum and minimum points SL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

The diagram below shows part of the graph of the gradient function, \(y = f'(x)\) .


On the grid below, sketch a graph of \(y = f”(x)\) , clearly indicating the x-intercept.

[2]
a.

Complete the table, for the graph of \(y = f(x)\) .

[2]
b.

Justify your answer to part (b) (ii).

[2]
c.
Answer/Explanation

Markscheme

     A1A1     N2

Note: Award A1 for negative gradient throughout, A1 for x-intercept of q. It need not be linear.

[2 marks]

a.

     A1A1     N1N1

b.

METHOD 1

Second derivative is zero, second derivative changes sign.     R1R1     N2

METHOD 2

There is a maximum on the graph of the first derivative.    R2     N2

c.

Question

Let \(f(x) = {{\rm{e}}^x}(1 – {x^2})\) .

Part of the graph of \(y = f(x)\), for \( – 6 \le x \le 2\) , is shown below. The x-coordinates of the local minimum and maximum points are r and s respectively.


Show that \(f'(x) = {{\rm{e}}^x}(1 – 2x – {x^2})\) . 

[3]
a.

Write down the equation of the horizontal asymptote.

[1]
b.

Write down the value of r and of s.

[4]
c.

Let L be the normal to the curve of f at \({\text{P}}(0{\text{, }}1)\) . Show that L has equation \(x + y = 1\) .

[4]
d.

Let R be the region enclosed by the curve \(y = f(x)\) and the line L.

(i)     Find an expression for the area of R.

(ii)    Calculate the area of R.

[5]
e(i) and (ii).
Answer/Explanation

Markscheme

evidence of using the product rule     M1

\(f'(x) = {{\rm{e}}^x}(1 – {x^2}) + {{\rm{e}}^x}( – 2x)\)     A1A1

Note: Award A1 for \({{\rm{e}}^x}(1 – {x^2})\) , A1 for \({{\rm{e}}^x}( – 2x)\) .

 

\(f'(x) = {{\rm{e}}^x}(1 – 2x – {x^2})\)     AG     N0

[3 marks]

a.

\(y = 0\)     A1     N1

[1 mark]

b.

at the local maximum or minimum point

\(f'(x) = 0\) \(({{\rm{e}}^x}(1 – 2x – {x^2}) = 0)\)     (M1)

\( \Rightarrow 1 – 2x – {x^2} = 0\)     (M1)

\(r = – 2.41\) \(s = 0.414\)     A1A1     N2N2

[4 marks]

c.

\(f'(0) = 1\)     A1

gradient of the normal \(= – 1\)     A1

evidence of substituting into an equation for a straight line     (M1)

correct substitution     A1

e.g. \(y – 1 = – 1(x – 0)\) , \(y – 1 = – x\) , \(y = – x + 1\)

\(x + y = 1\)     AG     N0

[4 marks]

d.

(i) intersection points at \(x = 0\) and \(x = 1\) (may be seen as the limits)     (A1)

approach involving subtraction and integrals     (M1)

fully correct expression     A2     N4

e.g. \(\int_0^1 {\left( {{{\rm{e}}^x}(1 – {x^2}) – (1 – x)} \right)} {\rm{d}}x\) , \(\int_0^1 {f(x){\rm{d}}x – \int_0^1 {(1 – x){\rm{d}}x} } \)

(ii) area \(R = 0.5\)     A1     N1

[5 marks]

e(i) and (ii).

Question

The following diagram shows the graph of \(f(x) = a\sin bx + c\), for \(0 \leqslant x \leqslant 12\).

N16/5/MATME/SP2/ENG/TZ0/10

The graph of \(f\) has a minimum point at \((3,{\text{ }}5)\) and a maximum point at \((9,{\text{ }}17)\).

The graph of \(g\) is obtained from the graph of \(f\) by a translation of \(\left( {\begin{array}{*{20}{c}} k \\ 0 \end{array}} \right)\). The maximum point on the graph of \(g\) has coordinates \((11.5,{\text{ }}17)\).

The graph of \(g\) changes from concave-up to concave-down when \(x = w\).

(i)     Find the value of \(c\).

(ii)     Show that \(b = \frac{\pi }{6}\).

(iii)     Find the value of \(a\).

[6]
a.

(i)     Write down the value of \(k\).

(ii)     Find \(g(x)\).

[3]
b.

(i)     Find \(w\).

(ii)     Hence or otherwise, find the maximum positive rate of change of \(g\).

[6]
c.
Answer/Explanation

Markscheme

(i)     valid approach     (M1)

eg\(\,\,\,\,\,\)\(\frac{{5 + 17}}{2}\)

\(c = 11\)    A1     N2

(ii)     valid approach     (M1)

eg\(\,\,\,\,\,\)period is 12, per \( = \frac{{2\pi }}{b},{\text{ }}9 – 3\)

\(b = \frac{{2\pi }}{{12}}\)    A1

\(b = \frac{\pi }{6}\)     AG     N0

(iii)     METHOD 1

valid approach     (M1)

eg\(\,\,\,\,\,\)\(5 = a\sin \left( {\frac{\pi }{6} \times 3} \right) + 11\), substitution of points

\(a =  – 6\)     A1     N2

METHOD 2

valid approach     (M1)

eg\(\,\,\,\,\,\)\(\frac{{17 – 5}}{2}\), amplitude is 6

\(a =  – 6\)     A1     N2

[6 marks]

a.

(i)     \(k = 2.5\)     A1     N1

(ii)     \(g(x) =  – 6\sin \left( {\frac{\pi }{6}(x – 2.5)} \right) + 11\)     A2     N2

[3 marks]

b.

(i)     METHOD 1 Using \(g\)

recognizing that a point of inflexion is required     M1

eg\(\,\,\,\,\,\)sketch, recognizing change in concavity

evidence of valid approach     (M1)

eg\(\,\,\,\,\,\)\(g”(x) = 0\), sketch, coordinates of max/min on \({g’}\)

\(w = 8.5\) (exact)     A1     N2

METHOD 2 Using \(f\)

recognizing that a point of inflexion is required     M1

eg\(\,\,\,\,\,\)sketch, recognizing change in concavity

evidence of valid approach involving translation     (M1)

eg\(\,\,\,\,\,\)\(x = w – k\), sketch, \(6 + 2.5\)

\(w = 8.5\) (exact)     A1     N2

(ii)     valid approach involving the derivative of \(g\) or \(f\) (seen anywhere)     (M1)

eg\(\,\,\,\,\,\)\(g'(w),{\text{ }} – \pi \cos \left( {\frac{\pi }{6}x} \right)\), max on derivative, sketch of derivative

attempt to find max value on derivative     M1

eg\(\,\,\,\,\,\)\( – \pi \cos \left( {\frac{\pi }{6}(8.5 – 2.5)} \right),{\text{ }}f'(6)\), dot on max of sketch

3.14159

max rate of change \( = \pi \) (exact), 3.14     A1     N2

[6 marks]

c.

Question

Let \(f(x) = \ln x\) and \(g(x) = 3 + \ln \left( {\frac{x}{2}} \right)\), for \(x > 0\).

The graph of \(g\) can be obtained from the graph of \(f\) by two transformations:

\[\begin{array}{*{20}{l}} {{\text{a horizontal stretch of scale factor }}q{\text{ followed by}}} \\ {{\text{a translation of }}\left( {\begin{array}{*{20}{c}} h \\ k \end{array}} \right).} \end{array}\]

Let \(h(x) = g(x) \times \cos (0.1x)\), for \(0 < x < 4\). The following diagram shows the graph of \(h\) and the line \(y = x\).

M17/5/MATME/SP2/ENG/TZ1/10.b.c

The graph of \(h\) intersects the graph of \({h^{ – 1}}\) at two points. These points have \(x\) coordinates 0.111 and 3.31 correct to three significant figures.

Write down the value of \(q\);

[1]
a.i.

Write down the value of \(h\);

[1]
a.ii.

Write down the value of \(k\).

[1]
a.iii.

Find \(\int_{0.111}^{3.31} {\left( {h(x) – x} \right){\text{d}}x} \).

[2]
b.i.

Hence, find the area of the region enclosed by the graphs of \(h\) and \({h^{ – 1}}\).

[3]
b.ii.

Let \(d\) be the vertical distance from a point on the graph of \(h\) to the line \(y = x\). There is a point \({\text{P}}(a,{\text{ }}b)\) on the graph of \(h\) where \(d\) is a maximum.

Find the coordinates of P, where \(0.111 < a < 3.31\).

[7]
c.
Answer/Explanation

Markscheme

\(q = 2\)     A1     N1

Note:     Accept \(q = 1\), \(h = 0\), and \(k = 3 – \ln (2)\), 2.31 as candidate may have rewritten \(g(x)\) as equal to \(3 + \ln (x) – \ln (2)\).

[1 mark]

a.i.

\(h = 0\)     A1     N1

Note:     Accept \(q = 1\), \(h = 0\), and \(k = 3 – \ln (2)\), 2.31 as candidate may have rewritten \(g(x)\) as equal to \(3 + \ln (x) – \ln (2)\).

[1 mark]

a.ii.

\(k = 3\)     A1     N1

Note:     Accept \(q = 1\), \(h = 0\), and \(k = 3 – \ln (2)\), 2.31 as candidate may have rewritten \(g(x)\) as equal to \(3 + \ln (x) – \ln (2)\).

[1 mark]

a.iii.

2.72409

2.72     A2     N2

[2 marks]

b.i.

recognizing area between \(y = x\) and \(h\) equals 2.72     (M1)

eg\(\,\,\,\,\,\)M17/5/MATME/SP2/ENG/TZ1/10.b.ii/M

recognizing graphs of \(h\) and \({h^{ – 1}}\) are reflections of each other in \(y = x\)     (M1)

eg\(\,\,\,\,\,\)area between \(y = x\) and \(h\) equals between \(y = x\) and \({h^{ – 1}}\)

\(2 \times 2.72\int_{0.111}^{3.31} {\left( {x – {h^{ – 1}}(x)} \right){\text{d}}x = 2.72} \)

5.44819

5.45     A1     N3

[??? marks]

b.ii.

valid attempt to find \(d\)     (M1)

eg\(\,\,\,\,\,\)difference in \(y\)-coordinates, \(d = h(x) – x\)

correct expression for \(d\)     (A1)

eg\(\,\,\,\,\,\)\(\left( {\ln \frac{1}{2}x + 3} \right)(\cos 0.1x) – x\)

valid approach to find when \(d\) is a maximum     (M1)

eg\(\,\,\,\,\,\)max on sketch of \(d\), attempt to solve \(d’ = 0\)

0.973679

\(x = 0.974\)     A2     N4 

substituting their \(x\) value into \(h(x)\)     (M1)

2.26938

\(y = 2.27\)     A1     N2

[7 marks]

c.

Question

Let \(f(x) =  – 0.5{x^4} + 3{x^2} + 2x\). The following diagram shows part of the graph of \(f\).

M17/5/MATME/SP2/ENG/TZ2/08

There are \(x\)-intercepts at \(x = 0\) and at \(x = p\). There is a maximum at A where \(x = a\), and a point of inflexion at B where \(x = b\).

Find the value of \(p\).

[2]
a.

Write down the coordinates of A.

[2]
b.i.

Write down the rate of change of \(f\) at A.

[1]
b.ii.

Find the coordinates of B.

[4]
c.i.

Find the the rate of change of \(f\) at B.

[3]
c.ii.

Let \(R\) be the region enclosed by the graph of \(f\) , the \(x\)-axis, the line \(x = b\) and the line \(x = a\). The region \(R\) is rotated 360° about the \(x\)-axis. Find the volume of the solid formed.

[3]
d.
Answer/Explanation

Markscheme

evidence of valid approach     (M1)

eg\(\,\,\,\,\,\)\(f(x) = 0,{\text{ }}y = 0\)

2.73205

\(p = 2.73\)     A1     N2

[2 marks]

a.

1.87938, 8.11721

\((1.88,{\text{ }}8.12)\)     A2     N2

[2 marks]

b.i.

rate of change is 0 (do not accept decimals)     A1     N1

[1 marks]

b.ii.

METHOD 1 (using GDC)

valid approach     M1

eg\(\,\,\,\,\,\)\(f’’ = 0\), max/min on \(f’,{\text{ }}x =  – 1\)

sketch of either \(f’\) or \(f’’\), with max/min or root (respectively)     (A1)

\(x = 1\)     A1     N1

Substituting their \(x\) value into \(f\)     (M1)

eg\(\,\,\,\,\,\)\(f(1)\)

\(y = 4.5\)     A1     N1

METHOD 2 (analytical)

\(f’’ =  – 6{x^2} + 6\)     A1

setting \(f’’ = 0\)     (M1)

\(x = 1\)     A1     N1

substituting their \(x\) value into \(f\)     (M1)

eg\(\,\,\,\,\,\)\(f(1)\)

\(y = 4.5\)     A1     N1

[4 marks]

c.i.

recognizing rate of change is \(f’\)     (M1)

eg\(\,\,\,\,\,\)\(y’,{\text{ }}f’(1)\)

rate of change is 6     A1     N2

[3 marks]

c.ii.

attempt to substitute either limits or the function into formula     (M1)

involving \({f^2}\) (accept absence of \(\pi \) and/or \({\text{d}}x\))

eg\(\,\,\,\,\,\)\(\pi \int {{{( – 0.5{x^4} + 3{x^2} + 2x)}^2}{\text{d}}x,{\text{ }}\int_1^{1.88} {{f^2}} } \)

128.890

\({\text{volume}} = 129\)     A2     N3

[3 marks]

d.

Question

Let \(f\left( x \right) = 12\,\,{\text{cos}}\,x – 5\,\,{\text{sin}}\,x,\,\, – \pi  \leqslant x \leqslant 2\pi \), be a periodic function with \(f\left( x \right) = f\left( {x + 2\pi } \right)\)

The following diagram shows the graph of \(f\).

There is a maximum point at A. The minimum value of \(f\) is −13 .

A ball on a spring is attached to a fixed point O. The ball is then pulled down and released, so that it moves back and forth vertically.

The distance, d centimetres, of the centre of the ball from O at time t seconds, is given by

\(d\left( t \right) = f\left( t \right) + 17,\,\,0 \leqslant t \leqslant 5.\)

Find the coordinates of A.

[2]
a.

For the graph of \(f\), write down the amplitude.

[1]
b.i.

For the graph of \(f\), write down the period.

[1]
b.ii.

Hence, write \(f\left( x \right)\) in the form \(p\,\,{\text{cos}}\,\left( {x + r} \right)\).

[3]
c.

Find the maximum speed of the ball.

[3]
d.

Find the first time when the ball’s speed is changing at a rate of 2 cm s−2.

[5]
e.
Answer/Explanation

Markscheme

−0.394791,13

A(−0.395, 13)      A1A1 N2

[2 marks]

a.

13      A1 N1

[1 mark]

b.i.

\({2\pi }\), 6.28      A1 N1

[1 mark]

b.ii.

valid approach      (M1)

eg recognizing that amplitude is p or shift is r

\(f\left( x \right) = 13\,\,{\text{cos}}\,\left( {x + 0.395} \right)\)   (accept p = 13, r = 0.395)     A1A1 N3

Note: Accept any value of r of the form \(0.395 + 2\pi k,\,\,k \in \mathbb{Z}\)

[3 marks]

c.

recognizing need for d ′(t)      (M1)

eg  −12 sin(t) − 5 cos(t)

correct approach (accept any variable for t)      (A1)

eg  −13 sin(t + 0.395), sketch of d′, (1.18, −13), t = 4.32

maximum speed = 13 (cms−1)      A1 N2

[3 marks]

d.

recognizing that acceleration is needed      (M1)

eg   a(t), d ”(t)

correct equation (accept any variable for t)      (A1)

eg  \(a\left( t \right) =  – 2,\,\,\left| {\frac{{\text{d}}}{{{\text{d}}t}}\left( {d’\left( t \right)} \right)} \right| = 2,\,\, – 12\,\,{\text{cos}}\,\left( t \right) + 5\,\,{\text{sin}}\,\left( t \right) =  – 2\)

valid attempt to solve their equation   (M1)

eg  sketch, 1.33

1.02154

1.02      A2 N3

[5 marks]

e.
Scroll to Top