Home / IBDP Maths AA: Topic SL 2.11: Transformations of graphs: IB style Questions SL Paper 2

IBDP Maths AA: Topic SL 2.11: Transformations of graphs: IB style Questions SL Paper 2

Question

Consider the graph of \(f\) shown below.


The following four diagrams show images of f under different transformations.


On the same grid sketch the graph of \(y = f( – x)\) .

[2]
a.

Complete the following table.


[2]
b.

Give a full geometric description of the transformation that gives the image in Diagram A.

[2]
c.
Answer/Explanation

Markscheme


     A2     N2

[2 marks]

a.

     A1A1     N2

[2 marks]

b.

translation (accept move/shift/slide etc.) with vector \(\left( {\begin{array}{*{20}{c}}
{ – 6}\\
{ – 2}
\end{array}} \right)\)     A1A1     N2

[2 marks]

c.

Question

Let \(f(x) = 3{x^2}\) . The graph of f is translated 1 unit to the right and 2 units down. The graph of g is the image of the graph of f after this translation.

Write down the coordinates of the vertex of the graph of g .

[2]
a.

Express g in the form \(g(x) = 3{(x – p)^2} + q\) .

[2]
b.

The graph of h is the reflection of the graph of g in the x-axis.

Write down the coordinates of the vertex of the graph of h .

[2]
c.
Answer/Explanation

Markscheme

\((1{\text{, }} – 2)\)     A1A1     N2

[2 marks]

a.

\(g(x) = 3{(x – 1)^2} – 2\) (accept \(p = 1\) , \(q = – 2\) )     A1A1     N2

[2 marks]

b.

\((1{\text{, }}2)\)     A1A1     N2

[2 marks]

c.

Question

Let \(f\) and \(g\) be functions such that \(g(x) = 2f(x + 1) + 5\) .

(a)     The graph of \(f\) is mapped to the graph of \(g\) under the following transformations:

vertical stretch by a factor of \(k\) , followed by a translation \(\left( \begin{array}{l}
p\\
q
\end{array} \right)\)
.

Write down the value of

  (i)     \(k\) ;

  (ii)     \(p\) ;

  (iii)     \(q\) .

(b)     Let \(h(x) = – g(3x)\) . The point A(\(6\), \(5\)) on the graph of \(g\) is mapped to the point \({\rm{A}}’\) on the graph of \(h\) . Find \({\rm{A}}’\) .

[6]
.

The graph of \(f\) is mapped to the graph of \(g\) under the following transformations:

vertical stretch by a factor of \(k\) , followed by a translation \(\left( \begin{array}{l}
p\\
q
\end{array} \right)\)
.

Write down the value of

  (i)     \(k\) ;

  (ii)     \(p\) ;

  (iii)     \(q\) .

[3]
a.

Let \(h(x) = – g(3x)\) . The point A(\(6\), \(5\)) on the graph of \(g\) is mapped to the point \({\rm{A}}’\) on the graph of \(h\) . Find \({\rm{A}}’\) .

[3]
b.
Answer/Explanation

Markscheme

(a)     (i)     \(k = 2\)     A1     N1

(ii)     \(p = – 1\)     A1     N1

(iii)     \(q = 5\)     A1     N1

[3 marks]


(b)     recognizing one transformation      (M1)

eg   horizontal stretch by \(\frac{1}{3}\) , reflection in \(x\)-axis

\({\rm{A’}}\) is (\(2\), \( – 5\))     A1A1     N3

[3 marks]

 

Total [6 marks]

.

(i)     \(k = 2\)     A1     N1

(ii)     \(p = – 1\)     A1     N1

(iii)     \(q = 5\)     A1     N1

[3 marks]

a.

recognizing one transformation      (M1)

eg   horizontal stretch by \(\frac{1}{3}\) , reflection in \(x\)-axis

\({\rm{A’}}\) is (\(2\), \( – 5\))     A1A1     N3

[3 marks]

 

Total [6 marks]

b.
Scroll to Top