Home / IBDP Maths AA: Topic: SL 2.5: functions: IB style Questions SL Paper 2

IBDP Maths AA: Topic: SL 2.5: functions: IB style Questions SL Paper 2

Question 5. [Maximum mark: 6]
The functions f and g are defined for\( x\epsilon R \) by \(f\left ( x \right )=6x^{2}-12x+1\) and  \(g\left ( x \right )=-x+c\)  where  \(c\epsilon R\)
(a) Find the range of f . 
(b) Given that \(  \left ( gof \right )\left ( x \right )\leq 0 \)   for all \(  x\epsilon R\), determine the set of possible values for c .

Answer/Explanation

(a) attempting to find the vertex

x=1 Or y=-5    OR f\left ( x \right )=6\left ( x-1 \right )^{2}-5 range is \(y\geq -5\)

(b)  METHOD 1

\(\left ( gof \right )\left ( x \right )=-\left ( 6x^{2} -12x+1\right )+c\left ( =-\left ( 6\left ( x-1 \right )^{2} -5\right ) +c\right )\)

EITHER 

relating to the range of f OR attempting to find g(-5) \(5+c\leq 0\)

OR

attempting to find the discriminant of \(\left ( gof \right )\left ( x \right )\) 

\(144+24\left ( c-1 \right )\leq 0\left ( 120+24c\leq 0 \right )\)

THEN

\(c\leq -5\)

METHOD 2

vertical reflection followed by vertical shift new vertex is (1,5+c)

\(5+c\leq 0\)

\(c\leq -5\)

Question

Let f (x) = 4 – x3 and g(x) = lnx  , for x >0 .

  1. Find (f °g)(x). [2]

  2. (i) Solve the equation (f °g)(x)= x 

(ii) Hence or otherwise, given that g(2a) = f -1 (2a),  , find the value of a . [5]

Answer/Explanation

Ans

Question

The graph of y = f (x) for -4 ≤ x ≤ 6 is shown in the following diagram.

 
 (a)        Write down the value of

 (i)       f (2) ;

(ii)      ( f o f )(2) .                                                                                                                                                             [2]

 (b)        Let g(x) = \(\frac{1}{2} f (x) +1\) for -4 ≤ x ≤ 6 . On the axes above, sketch the graph of g .                   [3]

Answer/Explanation

Ans:

(a) (i) f(2) = 6

(ii) (fof)2=− 2 [2 marks]

(b)

 

Question

The functions f and g are defined as:

\[f(x) = {{\text{e}}^{{x^2}}},{\text{ }}x \geqslant 0\]

\[g(x) = \frac{1}{{x + 3}},{\text{ }}x \ne – 3.\]

(a)     Find \(h(x){\text{ where }}h(x) = g \circ f(x)\) .

(b)     State the domain of \({h^{ – 1}}(x)\) .

(c)     Find \({h^{ – 1}}(x)\) .

Answer/Explanation

Markscheme

(a)     \(h(x) = g \circ f(x) = \frac{1}{{{{\text{e}}^{{x^2}}} + 3}},{\text{ }}(x \geqslant 0)\)     (M1)A1

 (b)     \(0 < x \leqslant \frac{1}{4}\)     A1A1

Note: Award A1 for limits and A1 for correct inequality signs.

 (c)     \(y = \frac{1}{{{{\text{e}}^{{x^2}}} + 3}}\)

\(y{{\text{e}}^{{x^2}}} + 3y = 1\)     M1

\({{\text{e}}^{{x^2}}} = \frac{{1 – 3y}}{y}\)     A1

\({x^2} = \ln \frac{{1 – 3y}}{y}\)     M1

\(x = \pm \sqrt {\ln \frac{{1 – 3y}}{y}} \)

\( \Rightarrow {h^{ – 1}}(x) = \sqrt {\ln \frac{{1 – 3x}}{x}} {\text{ }}\left( { = \sqrt {\ln \left( {\frac{1}{x} – 3} \right)} } \right)\)     A1

[8 marks]

Question

Let \(f(x) = \frac{4}{{x + 2}},{\text{ }}x \ne – 2{\text{ and }}g(x) = x – 1\).

If \(h = g \circ f\) , find

(a)     h(x) ;

(b)     \({h^{ – 1}}(x)\) , where \({h^{ – 1}}\) is the inverse of h.

Answer/Explanation

Markscheme

(a)     \(h(x) = g\left( {\frac{4}{{x + 2}}} \right)\)     (M1)

\( = \frac{4}{{x + 2}} – 1\,\,\,\,\,\left( { = \frac{{2 – x}}{{2 + x}}} \right)\)     A1

 

(b)     METHOD 1

\(x = \frac{4}{{y + 2}} – 1\,\,\,\,\,\)(interchanging x and y)     M1

Attempting to solve for y     M1

\((y + 2)(x + 1) = 4\,\,\,\,\,\left( {y + 2 = \frac{4}{{x + 1}}} \right)\)     (A1)

\({h^{ – 1}}(x) = \frac{4}{{x + 1}} – 2\,\,\,\,\,(x \ne – 1)\)     A1     N1

METHOD 2

\(x = \frac{{2 – y}}{{2 + y}}\,\,\,\,\,\)(interchanging x and y)     M1

Attempting to solve for y     M1

\(xy + y = 2 – 2x\,\,\,\,\,\left( {y(x + 1) = 2(1 – x)} \right)\)     (A1)

\({h^{ – 1}}(x) = \frac{{2(1 – x)}}{{x + 1}}\,\,\,\,\,(x \ne – 1)\)     A1     N1

Note: In either METHOD 1 or METHOD 2 rearranging first and interchanging afterwards is equally acceptable.

 

[6 marks]

Question

Shown below are the graphs of \(y = f(x)\) and \(y = g(x)\).

 

 

If \((f \circ g)(x) = 3\), find all possible values of x.

Answer/Explanation

Markscheme

\(g(x) = 0{\text{ or 3}}\)     (M1)(A1)

x = –1 or 4 or 1 or 2     A1A1

Notes: Award A1A1 for all four correct values,

A1A0 for two or three correct values,

A0A0 for less than two correct values.

Award M1 and corresponding A marks for correct attempt to find expressions for f and g.

 

[4 marks]

Question

[Maximum mark: 9] [with / without GDC]
The function \(f\) is given by \(f(x)=x^{2}-6x+13\), for \(x\geq 3\).
(a) Show that \(f\) may also be written in the form \(f(x)=(x-3)^{2}+4\).
(b) Hence find the inverse function f –1.
(c) State the domain and the range of \(f\) .
(d) State the domain and the range of f–1.

Answer/Explanation

(a) \(f(x)=(x-3)^{2}+4=x^{2}-6x+9+4=x^{2}-6x+13\)

(b) \(y=(x-3)^{2}+4\)
\(y-4=(x-3)^{2}\)
\(\sqrt{y-4}=x-3\)
\(\sqrt{y-4}+3=x\)
\(\Rightarrow f^{-1}(x)=\sqrt{x-4}+3\)

(c) x ≥ 3 and y ≥ 4
(d) x ≥ 4 and y ≥ 3

Scroll to Top