IB Mathematics SL 4.7 Discrete and continuous random variables AA SL Paper 2- Exam Style Questions- New Syllabus
A discrete random variable, X, has the following probability distribution:
x | 0 | 1 | 2 | 3 |
P(X=x) | 0.41 | k – 0.28 | 0.46 | 0.29 – 2k² |
a) Show that \( 2k^2 – k + 0.12 = 0 \) [2]
b) Find the value of \( k \), giving a reason for your answer [2]
c) Hence, find \( E(X) \) [2]
▶️ Answer/Explanation
a) Sum of probabilities must equal 1:
\( 0.41 + (k – 0.28) + 0.46 + (0.29 – 2k^2) = 1 \)
Combine constants: \( 0.41 – 0.28 + 0.46 + 0.29 + k – 2k^2 = 1 \)
\( 0.88 + k – 2k^2 = 1 \)
Subtract 1: \( 0.88 + k – 2k^2 – 1 = 0 \)
\( -2k^2 + k – 0.12 = 0 \)
Multiply by -1: \( 2k^2 – k + 0.12 = 0 \) [2]
b) Solve \( 2k^2 – k + 0.12 = 0 \):
Quadratic formula: \( k = \frac{-(-1) \pm \sqrt{(-1)^2 – 4 \times 2 \times 0.12}}{2 \times 2} \)
Discriminant: \( 1 – 0.96 = 0.04 \)
\( k = \frac{1 \pm \sqrt{0.04}}{4} = \frac{1 \pm 0.2}{4} \)
\( k = \frac{1.2}{4} = 0.3 \) or \( k = \frac{0.8}{4} = 0.2 \)
Check: For \( k = 0.3 \), \( P(X=1) = 0.3 – 0.28 = 0.02 \geq 0 \), \( P(X=3) = 0.29 – 2 \times 0.3^2 = 0.11 \geq 0 \)
For \( k = 0.2 \), \( P(X=1) = 0.2 – 0.28 = -0.08 < 0 \) (invalid)
Reason: \( k = 0.3 \) is valid as all probabilities are non-negative [2]
c) Use \( k = 0.3 \):
\( P(X=0) = 0.41 \)
\( P(X=1) = 0.3 – 0.28 = 0.02 \)
\( P(X=2) = 0.46 \)
\( P(X=3) = 0.29 – 2 \times 0.3^2 = 0.29 – 0.18 = 0.11 \)
\( E(X) = 0 \times 0.41 + 1 \times 0.02 + 2 \times 0.46 + 3 \times 0.11 \)
\( = 0 + 0.02 + 0.92 + 0.33 = 1.27 \) [2]