Home / IBDP Maths AI: Topic : AHL 1.15: Eigenvalues and eigenvectors: IB style Questions HL Paper 1

IBDP Maths AI: Topic : AHL 1.15: Eigenvalues and eigenvectors: IB style Questions HL Paper 1

Question

Phoebe opens a coffee shop, near to a well-established Apollo coffee shop.

After being open for a few months, Phoebe notices that

* 10% of customers who preferred the Apollo coffee shop in one month preferred her coffee shop the following month.
* 25% of customers who preferred her coffee shop in one month preferred the Apollo coffee shop the following month.

She decides to show these changes in the following transition matrix.

$\begin{pmatrix} 0.9 & 0.25 \\ 0.1 & 0.75 \end{pmatrix}$

The two eigenvalues for this matrix are 1 and 0.65. An eigenvector corresponding to the eigenvalue of 1 is $\begin{pmatrix} 5 \\ 2 \end{pmatrix}$.

(a) Find an eigenvector corresponding to the eigenvalue of 0.65.

A diagonal matrix of eigenvalues is $D = \begin{pmatrix} 0.65 & 0 \\ 0 & 1 \end{pmatrix}$.

(b) Write down an expression for $D^n$, giving your answer as a 2 x 2 matrix in terms of $n$.

When Phoebe’s coffee shop first opened, the Apollo shop had 7000 customers the previous month.

(c) Assuming all 7000 customers continue to go to one of these coffee shops, find an expression for the number that will favour Phoebe’s coffee shop after $n$ months.

▶️Answer/Explanation

Detailed Solution

Given Transition Matrix:

A=[0.90.250.10.75]A = \begin{bmatrix} 0.9 & 0.25 \\ 0.1 & 0.75 \end{bmatrix}

The eigenvalues of this matrix are given as 1 and 0.65.

(a) Find an eigenvector corresponding to the eigenvalue 0.65

For an eigenvector v corresponding to

λ=0.65\lambda = 0.65

, we solve:

(A0.65I)v=0

(A – 0.65I)v = 0 [0.90.650.250.10.750.65][xy]=[00]

\begin{bmatrix} 0.9 – 0.65 & 0.25 \\ 0.1 & 0.75 – 0.65 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} [0.250.250.10.1][xy]=[00]\begin{bmatrix} 0.25 & 0.25 \\ 0.1 & 0.1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}

Solving for

xx

and

yy

, we get an eigenvector of the form:

v2=[11]\mathbf{v_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}

(b) Expression for

DnD^n

The diagonal matrix is given by:

D=[0.65001]D = \begin{bmatrix} 0.65 & 0 \\ 0 & 1 \end{bmatrix}

Raising it to the power

nn

:

Dn=[0.65n001n]=[0.65n001]D^n = \begin{bmatrix} 0.65^n & 0 \\ 0 & 1^n \end{bmatrix} = \begin{bmatrix} 0.65^n & 0 \\ 0 & 1 \end{bmatrix}

(c) Expression for the number of customers favoring Phoebe’s shop after

nn

months

Let the initial state vector be:

X0=[70000]X_0 = \begin{bmatrix} 7000 \\ 0 \end{bmatrix}

The state after

nn

months is given by:

Xn=PnX0X_n = P^n X_0

We express

PP

in terms of its eigenvectors and diagonal matrix:

P=SDS1P = S D S^{-1}

Using this approach and the given data, we can derive the number of customers favoring Phoebe’s shop at month

nn

.

Step 1: Diagonalizing

PP

We are given the transition matrix:

P=[0.90.250.10.75]P = \begin{bmatrix} 0.9 & 0.25 \\ 0.1 & 0.75 \end{bmatrix}

The eigenvalues are 1 and 0.65, with corresponding eigenvectors:

  • For
    λ1=1\lambda_1 = 1

    , eigenvector:

    v1=[52]v_1 = \begin{bmatrix} 5 \\ 2 \end{bmatrix}
  • For
    λ2=0.65\lambda_2 = 0.65

    , eigenvector:

    v2=[11]v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}

Thus, we form the eigenvector matrix:

S=[5121]S = \begin{bmatrix} 5 & 1 \\ 2 & -1 \end{bmatrix}

Its inverse is calculated as:

S1=1(5)(1)(1)(2)[1125]=152[1125]=17[1125]

S^{-1} = \frac{1}{(5)(-1) – (1)(2)} \begin{bmatrix} -1 & -1 \\ -2 & 5 \end{bmatrix} = \frac{1}{-5 – 2} \begin{bmatrix} -1 & -1 \\ -2 & 5 \end{bmatrix} = \frac{1}{-7} \begin{bmatrix} -1 & -1 \\ -2 & 5 \end{bmatrix} S1=[17172757]S^{-1} = \begin{bmatrix} \frac{1}{7} & \frac{1}{7} \\ \frac{2}{7} & -\frac{5}{7} \end{bmatrix}

Step 2: Compute

PnP^n

Since

PP

can be written as:

P=SDS1P = S D S^{-1}

Raising it to the power

nn

:

Pn=SDnS1P^n = S D^n S^{-1}

Since

DnD^n

is diagonal:

Dn=[0.65n001]

D^n = \begin{bmatrix} 0.65^n & 0 \\ 0 & 1 \end{bmatrix} Pn=S[0.65n001]S1P^n = S \begin{bmatrix} 0.65^n & 0 \\ 0 & 1 \end{bmatrix} S^{-1}

Expanding:

Pn=[5121][0.65n001][17172757]P^n = \begin{bmatrix} 5 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 0.65^n & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{7} & \frac{1}{7} \\ \frac{2}{7} & -\frac{5}{7} \end{bmatrix}

Multiplying

SDnS D^n

:

[5(0.65n)1(0.65n)2(0.65n)1(0.65n)]=[5(0.65n)0.65n2(0.65n)0.65n]\begin{bmatrix} 5(0.65^n) & 1(0.65^n) \\ 2(0.65^n) & -1(0.65^n) \end{bmatrix} = \begin{bmatrix} 5(0.65^n) & 0.65^n \\ 2(0.65^n) & -0.65^n \end{bmatrix}

Now multiplying with

S1S^{-1}

:

Pn=[5(0.65n)+2(0.65n)5(0.65n)5(0.65n)2(0.65n)2(0.65n)27(0.65n)+(57)]P^n = \begin{bmatrix} 5(0.65^n) + 2(0.65^n) & 5(0.65^n) – 5(0.65^n) \\ 2(0.65^n) – 2(0.65^n) & \frac{2}{7}(0.65^n) + \left(-\frac{5}{7} \right) \end{bmatrix}

Simplifying:

Pn=[5+2(0.65n)75(10.65n)72(10.65n)72(0.65n)+57]P^n = \begin{bmatrix} \frac{5 + 2(0.65^n)}{7} & \frac{5(1 – 0.65^n)}{7} \\ \frac{2(1 – 0.65^n)}{7} & \frac{2(0.65^n) + 5}{7} \end{bmatrix}

Step 3: Compute

XnX_n

The initial state is:

X0=[70000]X_0 = \begin{bmatrix} 7000 \\ 0 \end{bmatrix} Xn=PnX0X_n = P^n X_0

Multiplying:

Xn=[5+2(0.65n)75(10.65n)72(10.65n)72(0.65n)+57][70000]

X_n = \begin{bmatrix} \frac{5 + 2(0.65^n)}{7} & \frac{5(1 – 0.65^n)}{7} \\ \frac{2(1 – 0.65^n)}{7} & \frac{2(0.65^n) + 5}{7} \end{bmatrix} \begin{bmatrix} 7000 \\ 0 \end{bmatrix} Xn=[5+2(0.65n)7×7000+5(10.65n)7×02(10.65n)7×7000+2(0.65n)+57×0]

X_n = \begin{bmatrix} \frac{5 + 2(0.65^n)}{7} \times 7000 + \frac{5(1 – 0.65^n)}{7} \times 0 \\ \frac{2(1 – 0.65^n)}{7} \times 7000 + \frac{2(0.65^n) + 5}{7} \times 0 \end{bmatrix} Xn=[7000(5+2(0.65n))77000(2(10.65n))7]

X_n = \begin{bmatrix} \frac{7000(5 + 2(0.65^n))}{7} \\ \frac{7000(2(1 – 0.65^n))}{7} \end{bmatrix} Xn=[10000+2000(0.65n)20002000(0.65n)]X_n = \begin{bmatrix} 10000 + 2000(0.65^n) \\ 2000 – 2000(0.65^n) \end{bmatrix}

 

The number of customers favoring Phoebe’s coffee shop after

nn

months is:

20002000(0.65n)

…………………………Markscheme……………………………..

2000 – 2000(0.65^n)

Solution: –

(a) $\begin{pmatrix} 0.25 & 0.25 \\ 0.1 & 0.1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ (or any multiple)

(b) $D^n = \begin{pmatrix} 0.65^n & 0 \\ 0 & 1 \end{pmatrix}$

(c) $\begin{pmatrix} 1 & 5 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 0.65^n & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 5 \\ -1 & 2 \end{pmatrix}^{-1}$

EITHER
multiplying by the initial state
$\begin{pmatrix} 1 & 5 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 0.65^n & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 5 \\ -1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 7000 \\ 0 \end{pmatrix}$

$\begin{pmatrix} 1 & 5 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 0.65^n & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2000 \\ 1000 \end{pmatrix}$

$\begin{pmatrix} 1 & 5 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2000 \times 0.65^n \\ 1000 \end{pmatrix}$

$\begin{pmatrix} 2000 \times 0.65^n + 5000 \\ -2000 \times 0.65^n + 2000 \end{pmatrix}$

OR
$\begin{pmatrix} 1 & 5 \\ -1 & 2 \end{pmatrix}^{-1} = \frac{1}{7} \begin{pmatrix} 2 & -5 \\ 1 & 1 \end{pmatrix}$

$\begin{pmatrix} 1 & 5 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 0.65^n & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0.65^n & 5 \\ -0.65^n & 2 \end{pmatrix}$

$\frac{1}{7}\begin{pmatrix} 15+2\times0.65^n & 5-5\times0.65^n \\ 2-2\times0.65^n & 2+5\times0.65^n \end{pmatrix}$

multiplying by the initial state
$\frac{1}{7}\begin{pmatrix} 15+2\times0.65^n & 5-5\times0.65^n \\ 2-2\times0.65^n & 2+5\times0.65^n \end{pmatrix} \begin{pmatrix} 7000 \\ 0 \end{pmatrix}$

THEN

$2000-2000\times0.65^n (=2000(1-0.65^n))$

Question 

A system of differential equations of the form $\frac{dx}{dt}=ax+by, \frac{dy}{dt}=cx+dy$ has

eigenvalues $\lambda=-1$ and $\lambda=2$ with corresponding eigenvectors $\binom{3}{1}$ and $\binom{1}{3}$.

The following incomplete phase portrait for this system, with $x, y\ge0$, shows lines through $(0, 0)$ parallel to the eigenvectors.

(a) On the phase portrait

(i) show the direction of motion along the eigenvectors.

(ii) sketch one trajectory in each of the three regions.

In the system described above, x and y are the population sizes of two species, X and Y. The population of Y is vulnerable, so it will be increased by adding more animals from a different area. Currently, x = 252 and y = 60 .
(b) Find the minimum number of new animals from species Y that need to be added for the
population not to reduce to 0 over time.

▶️Answer/Explanation

Detailed Solution

 The system is given in the form:

\[
\frac{dx}{dt} = ax + by, \quad \frac{dy}{dt} = cx + dy
\]

We’re given the eigenvalues are \(\lambda = -1\) and \(\lambda = 2\), with corresponding eigenvectors \(\begin{pmatrix} 3 \\ 1 \end{pmatrix}\) and \(\begin{pmatrix} 1 \\ 3 \end{pmatrix}\). The phase portrait is provided, showing lines through the origin \((0, 0)\) parallel to the eigenvectors, and we need to analyze the system in the first quadrant (\(x, y \geq 0\)). The tasks are to determine the direction of motion along the eigenvectors, we will sketch trajectories in the three regions defined by the eigenvectors, and find the minimum number of new \(Y\) animals to add to prevent extinction, given initial populations \(x = 252\) and \(y = 60\).

Step 1: Determine the Coefficients \(a, b, c, d\)
The system can be written in matrix form as:
\[
\begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}
\]
The matrix \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\) has eigenvalues \(\lambda_1 = -1\) and \(\lambda_2 = 2\), with eigenvectors \(\begin{pmatrix} 3 \\ 1 \end{pmatrix}\) and \(\begin{pmatrix} 1 \\ 3 \end{pmatrix}\), respectively.

Eigenvalue \(\lambda_1 = -1\), Eigenvector \(\begin{pmatrix} 3 \\ 1 \end{pmatrix}\):
\[
(A – \lambda_1 I) \mathbf{v}_1 = 0 \implies \begin{pmatrix} a – (-1) & b \\ c & d – (-1) \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]
\[
\begin{pmatrix} a + 1 & b \\ c & d + 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]
\[
(a + 1) \cdot 3 + b \cdot 1 = 0 \implies 3(a + 1) + b = 0 \implies 3a + 3 + b = 0 \implies b = -3a – 3 \quad (1)
\]
\[
c \cdot 3 + (d + 1) \cdot 1 = 0 \implies 3c + d + 1 = 0 \implies d = -3c – 1 \quad (2)
\]

Eigenvalue \(\lambda_2 = 2\), Eigenvector \(\begin{pmatrix} 1 \\ 3 \end{pmatrix}\):
\[
(A – \lambda_2 I) \mathbf{v}_2 = 0 \implies \begin{pmatrix} a – 2 & b \\ c & d – 2 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]
\[
(a – 2) \cdot 1 + b \cdot 3 = 0 \implies a – 2 + 3b = 0 \implies a + 3b = 2 \quad (3)
\]
\[
c \cdot 1 + (d – 2) \cdot 3 = 0 \implies c + 3(d – 2) = 0 \implies c + 3d – 6 = 0 \implies c = -3d + 6 \quad (4)
\]

Solve the System of Equations:
From (1): \(b = -3a – 3\)
Substitute into (3):
\[
a + 3(-3a – 3) = 2 \implies a – 9a – 9 = 2 \implies -8a – 9 = 2 \implies -8a = 11 \implies a = -\frac{11}{8}
\]
\[
b = -3\left(-\frac{11}{8}\right) – 3 = \frac{33}{8} – \frac{24}{8} = \frac{9}{8}
\]
From (4): \(c = -3d + 6\)
Substitute into (2):
\[
d = -3(-3d + 6) – 1 \implies d = 9d – 18 – 1 \implies d – 9d = -19 \implies -8d = -19 \implies d = \frac{19}{8}
\]
\[
c = -3\left(\frac{19}{8}\right) + 6 = -\frac{57}{8} + \frac{48}{8} = -\frac{9}{8}
\]
So, the matrix is:
\[
A = \begin{pmatrix} -\frac{11}{8} & \frac{9}{8} \\ -\frac{9}{8} & \frac{19}{8} \end{pmatrix}
\]

Verify:
Trace of \(A\): \(a + d = -\frac{11}{8} + \frac{19}{8} = \frac{8}{8} = 1 = \lambda_1 + \lambda_2 = -1 + 2\)
 Determinant of \(A\): \(ad – bc = \left(-\frac{11}{8}\right)\left(\frac{19}{8}\right) – \left(\frac{9}{8}\right)\left(-\frac{9}{8}\right) = -\frac{209}{64} + \frac{81}{64} = -\frac{128}{64} = -2 = \lambda_1 \lambda_2 = (-1)(2)\)
The matrix is correct.

Step 2: General Solution
The system is:
\[
\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}
\]
The general solution is:
\[
\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2 t} \mathbf{v}_2 = c_1 e^{-t} \begin{pmatrix} 3 \\ 1 \end{pmatrix} + c_2 e^{2t} \begin{pmatrix} 1 \\ 3 \end{pmatrix}
\]
\[
x(t) = 3 c_1 e^{-t} + c_2 e^{2t}, \quad y(t) = c_1 e^{-t} + 3 c_2 e^{2t}
\]

Eigenvector Lines:
\(\lambda_1 = -1\), \(\mathbf{v}_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}\): Line \(y = \frac{1}{3}x\).
\(\lambda_2 = 2\), \(\mathbf{v}_2 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}\): Line \(y = 3x\).

These lines divide the first quadrant into three regions:
Region I: Above \(y = 3x\) (\(y > 3x\)).
Region II: Between \(y = 3x\) and \(y = \frac{1}{3}x\) (\(3x > y > \frac{1}{3}x\)).
Region III: Below \(y = \frac{1}{3}x\) (\(y < \frac{1}{3}x\)).

Part (a)(i): Show the Direction of Motion Along the Eigenvectors
Along \(\mathbf{v}_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}\), \(\lambda_1 = -1\):
The solution along this eigenvector is:
\[
\begin{pmatrix} x \\ y \end{pmatrix} = c_1 e^{-t} \begin{pmatrix} 3 \\ 1 \end{pmatrix}
\]
As \(t \to \infty\), \(e^{-t} \to 0\), so the solution approaches the origin \((0, 0)\). As \(t \to -\infty\), \(e^{-t} \to \infty\), so the solution moves away from the origin. Thus, the direction of motion is **toward the origin** along this line in both directions from the origin.

Along \(\mathbf{v}_2 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}\), \(\lambda_2 = 2\):
\[
\begin{pmatrix} x \\ y \end{pmatrix} = c_2 e^{2t} \begin{pmatrix} 1 \\ 3 \end{pmatrix}
\]
As \(t \to \infty\), \(e^{2t} \to \infty\), so the solution moves away from the origin. As \(t \to -\infty\), \(e^{2t} \to 0\), so the solution approaches the origin. Thus, the direction of motion is **away from the origin** along this line in both directions.

Answer for (a)(i):
 Along \(y = \frac{1}{3}x\), the direction is toward the origin.
Along \(y = 3x\), the direction is **away from the origin**.

Part (a)(ii): Sketch One Trajectory in Each of the Three Regions
The origin is a saddle point (one positive eigenvalue, one negative), so trajectories will generally be influenced by the unstable direction (\(\lambda_2 = 2\)) as \(t \to \infty\).

Determine the Behavior:
As \(t \to \infty\), the \(e^{2t}\) term dominates, so trajectories will tend to align with the eigenvector \(\begin{pmatrix} 1 \\ 3 \end{pmatrix}\) (line \(y = 3x\)), moving away from the origin.
As \(t \to -\infty\), the \(e^{-t}\) term dominates, so trajectories approach the origin along the direction of \(\begin{pmatrix} 3 \\ 1 \end{pmatrix}\) (line \(y = \frac{1}{3}x\)).

Region I (\(y > 3x\)):
Choose a point, e.g., \((1, 4)\):
\[
y = 4 > 3 \times 1 = 3
\]
Solve for \(c_1, c_2\):
\[
x(0) = 3 c_1 + c_2 = 1 \quad (1)
\]
\[
y(0) = c_1 + 3 c_2 = 4 \quad (2)
\]
\[
(2) – 3 \times (1): (c_1 + 3 c_2) – 3 (3 c_1 + c_2) = 4 – 3 \implies c_1 + 3 c_2 – 9 c_1 – 3 c_2 = 1 \implies -8 c_1 = 1 \implies c_1 = -\frac{1}{8}
\]
\[
3 \left(-\frac{1}{8}\right) + c_2 = 1 \implies -\frac{3}{8} + c_2 = 1 \implies c_2 = 1 + \frac{3}{8} = \frac{11}{8}
\]
\[
x(t) = 3 \left(-\frac{1}{8}\right) e^{-t} + \frac{11}{8} e^{2t} = -\frac{3}{8} e^{-t} + \frac{11}{8} e^{2t}
\]
\[
y(t) = -\frac{1}{8} e^{-t} + 3 \left(\frac{11}{8}\right) e^{2t} = -\frac{1}{8} e^{-t} + \frac{33}{8} e^{2t}
\]
As \(t \to \infty\), \(x \to \infty\), \(y \to \infty\), and \(\frac{y}{x} \to \frac{\frac{33}{8} e^{2t}}{\frac{11}{8} e^{2t}} = 3\), so the trajectory approaches the line \(y = 3x\).
As \(t \to -\infty\), the \(e^{-t}\) terms dominate, but \(c_1\) is negative, so the trajectory comes from the third quadrant, crosses into the first quadrant, and then diverges along \(y = 3x\).

Region II (\(3x > y > \frac{1}{3}x\)):
Choose \((1, 1)\):
\[
3 \times 1 > 1 > \frac{1}{3} \times 1
\]
\[
3 c_1 + c_2 = 1 \quad (1)
\]
\[
c_1 + 3 c_2 = 1 \quad (2)
\]
\[
(1) – 3 \times (2): (3 c_1 + c_2) – 3 (c_1 + 3 c_2) = 1 – 3 \implies 3 c_1 + c_2 – 3 c_1 – 9 c_2 = -2 \implies -8 c_2 = -2 \implies c_2 = \frac{1}{4}
\]
\[
c_1 + 3 \left(\frac{1}{4}\right) = 1 \implies c_1 + \frac{3}{4} = 1 \implies c_1 = \frac{1}{4}
\]
\[
x(t) = 3 \left(\frac{1}{4}\right) e^{-t} + \frac{1}{4} e^{2t} = \frac{3}{4} e^{-t} + \frac{1}{4} e^{2t}
\]
\[
y(t) = \frac{1}{4} e^{-t} + 3 \left(\frac{1}{4}\right) e^{2t} = \frac{1}{4} e^{-t} + \frac{3}{4} e^{2t}
\]
As \(t \to \infty\), the trajectory diverges along \(y = 3x\).
As \(t \to -\infty\), it approaches the origin along \(y = \frac{1}{3}x\).

Region III (\(y < \frac{1}{3}x\)):
Choose \((3, 0.5)\):
\[
\frac{1}{3} \times 3 = 1 > 0.5
\]
\[
3 c_1 + c_2 = 3 \quad (1)
\]
\[
c_1 + 3 c_2 = 0.5 \quad (2)
\]
\[
(1) – 3 \times (2): (3 c_1 + c_2) – 3 (c_1 + 3 c_2) = 3 – 1.5 \implies -8 c_2 = 1.5 \implies c_2 = -\frac{1.5}{8} = -\frac{3}{16}
\]
\[
c_1 + 3 \left(-\frac{3}{16}\right) = 0.5 \implies c_1 – \frac{9}{16} = 0.5 \implies c_1 = 0.5 + \frac{9}{16} = \frac{17}{16}
\]
\[
x(t) = 3 \left(\frac{17}{16}\right) e^{-t} + \left(-\frac{3}{16}\right) e^{2t} = \frac{51}{16} e^{-t} – \frac{3}{16} e^{2t}
\]
\[
y(t) = \frac{17}{16} e^{-t} + 3 \left(-\frac{3}{16}\right) e^{2t} = \frac{17}{16} e^{-t} – \frac{9}{16} e^{2t}
\]
As \(t \to \infty\), the \(e^{2t}\) term dominates, and since \(c_2 < 0\), \(x \to -\infty\), \(y \to -\infty\), so the trajectory moves into the third quadrant along \(y = 3x\).
As \(t \to -\infty\), it approaches the origin along \(y = \frac{1}{3}x\).

 (a)(ii):
Region I: Trajectory starts above \(y = 3x\), comes from the third quadrant, crosses into the first quadrant, and diverges along \(y = 3x\) upward.
Region II: Trajectory starts between the lines, approaches the origin along \(y = \frac{1}{3}x\), then diverges along \(y = 3x\).
Region III: Trajectory starts below \(y = \frac{1}{3}x\), approaches the origin along \(y = \frac{1}{3}x\), then diverges along \(y = 3x\) into the third quadrant.

The desired graph is shown below

Part (b): Minimum Number of New \(Y\) Animals to Prevent Extinction
Given initial populations \(x(0) = 252\), \(y(0) = 60\), we need to add \(\delta\) animals to \(Y\), so the new initial condition is \((252, 60 + \delta)\). We want \(y(t) \geq 0\) for all \(t \geq 0\) to prevent extinction.

Step 1: Solve for \(c_1, c_2\):
\[
3 c_1 + c_2 = 252 \quad (1)
\]
\[
c_1 + 3 c_2 = 60 + \delta \quad (2)
\]
\[
(1) – 3 \times (2): (3 c_1 + c_2) – 3 (c_1 + 3 c_2) = 252 – 3 (60 + \delta) \implies -8 c_2 = 252 – 180 – 3\delta \implies -8 c_2 = 72 – 3\delta \implies c_2 = \frac{3\delta – 72}{8}
\]
\[
c_1 + 3 \left(\frac{3\delta – 72}{8}\right) = 60 + \delta \implies c_1 + \frac{9\delta – 216}{8} = 60 + \delta
\]
\[
c_1 = 60 + \delta – \frac{9\delta – 216}{8} = \frac{480 + 8\delta – 9\delta + 216}{8} = \frac{696 – \delta}{8}
\]
\[
y(t) = \frac{696 – \delta}{8} e^{-t} + 3 \left(\frac{3\delta – 72}{8}\right) e^{2t} = \frac{696 – \delta}{8} e^{-t} + \frac{9\delta – 216}{8} e^{2t}
\]

Step 2: Ensure \(y(t) \geq 0\):
\[
y(t) = \frac{696 – \delta}{8} e^{-t} + \frac{9\delta – 216}{8} e^{2t}
\]
As \(t \to \infty\), the \(e^{2t}\) term dominates:
– If \(9\delta – 216 > 0 \implies \delta > 24\), then \(y(t) \to \infty\), and \(y(t) > 0\) for large \(t\).
– If \(9\delta – 216 = 0 \implies \delta = 24\), then \(y(t) \to 0\) as \(t \to \infty\).
– If \(9\delta – 216 < 0 \implies \delta < 24\), then \(y(t) \to -\infty\), which leads to extinction.

Set \(\delta = 24\):
\[
y(t) = \frac{696 – 24}{8} e^{-t} = \frac{672}{8} e^{-t} = 84 e^{-t}
\]
This is always positive but approaches 0, which may not be considered “preventing extinction” in a practical sense. We need \(y(t)\) to remain positive and not approach 0, so \(\delta > 24\).

Try \(\delta = 25\):
\[
c_1 = \frac{696 – 25}{8} = \frac{671}{8}, \quad c_2 = \frac{3 \times 25 – 72}{8} = \frac{75 – 72}{8} = \frac{3}{8}
\]
\[
y(t) = \frac{671}{8} e^{-t} + \frac{9 \times 25 – 216}{8} e^{2t} = \frac{671}{8} e^{-t} + \frac{225 – 216}{8} e^{2t} = \frac{671}{8} e^{-t} + \frac{9}{8} e^{2t}
\]
Find the minimum of \(y(t)\):
\[
\frac{dy}{dt} = -\frac{671}{8} e^{-t} + \frac{9}{8} \cdot 2 e^{2t} = 0 \implies -\frac{671}{8} e^{-t} + \frac{18}{8} e^{2t} = 0 \implies 18 e^{2t} = 671 e^{-t}
\]
\[
e^{3t} = \frac{671}{18} \approx 37.2778 \implies 3t = \ln\left(\frac{671}{18}\right) \implies t = \frac{1}{3} \ln\left(\frac{671}{18}\right) \approx 1.211
\]
\[
e^{-t} \approx e^{-1.211} \approx 0.2978, \quad e^{2t} \approx (37.2778)^{2/3} \approx 11.149
\]
\[
y_{\text{min}} \approx \frac{671}{8} \cdot 0.2978 + \frac{9}{8} \cdot 11.149 \approx 24.99 + 12.54 \approx 37.53 > 0
\]
Since \(y(t) > 0\) for all \(t\), \(\delta = 25\) ensures \(Y\) does not go extinct.

The minimum number of new \(Y\) animals to add is 25.

………………………….Markscheme………………………………….

Solution: –

(a) (i)&(ii)

(b) for Y not to die out $y>\frac{1}{3}x$

as $x=252, y>84$

(minimum number of new animals is) 25

Question 

A duck is sitting in a duck pond at point \( A(7, 4, 0) \) relative to an origin \( O \), where lengths are measured in metres and time, \( t \), is measured in seconds. It takes off and flies in a straight line with the vector equation:

\[ d = \begin{pmatrix} 7 \\ 4 \\ 0 \end{pmatrix} + t \begin{pmatrix} 6 \\ 6 \\ 3 \end{pmatrix} \]

(a) Find the speed of the duck through the air (in \( \text{ms}^{-1} \)).

A hawk hovering at position vector:

\[ \begin{pmatrix} -38 \\ 134 \\ 315 \end{pmatrix} \]

relative to \( O \), sees the duck take off and immediately dives from its position with constant velocity vector:

\[ \begin{pmatrix} 15 \\ -20 \\ -60 \end{pmatrix} \]

to intercept the duck.

(b) Write down the vector equation for \( h \), that models the flight of the hawk.

(c) Find the position vector at which the hawk intercepts the duck.

▶️ Answer/ExplanationDetailed Solution

(a) Finding the speed of the duck

The velocity vector of the duck is:

\[ \begin{pmatrix} 6 \\ 6 \\ 3 \end{pmatrix} \]

The speed is given by the magnitude of this vector:

\[ \sqrt{6^2 + 6^2 + 3^2} \]

\[ = \sqrt{36 + 36 + 9} \]

\[ = \sqrt{81} = 9 \quad \text{(ms}^{-1}\text{)} \]

(b) Finding the vector equation of the hawk’s flight

The hawk starts at:

\[ \begin{pmatrix} -38 \\ 134 \\ 315 \end{pmatrix} \]

with velocity vector:

\[ \begin{pmatrix} 15 \\ -20 \\ -60 \end{pmatrix} \]

Thus, the vector equation for the hawk’s flight is:

\[ h = \begin{pmatrix} -38 \\ 134 \\ 315 \end{pmatrix} + t \begin{pmatrix} 15 \\ -20 \\ -60 \end{pmatrix} \]

(c) Finding the interception point

At the point of interception, the position vectors of the duck and the hawk must be equal:

\[ \begin{pmatrix} 7 \\ 4 \\ 0 \end{pmatrix} + t \begin{pmatrix} 6 \\ 6 \\ 3 \end{pmatrix} = \begin{pmatrix} -38 \\ 134 \\ 315 \end{pmatrix} + t \begin{pmatrix} 15 \\ -20 \\ -60 \end{pmatrix} \]

Equating the x-components:

\[ 7 + 6t = -38 + 15t \]

Solving for \( t \):

\[ 7 + 6t + 38 = 15t \]

\[ 45 + 6t = 15t \]

\[ 45 = 9t \]

\[ t = 5 \]

Substituting \( t = 5 \) into the hawk’s position equation:

\[ \begin{pmatrix} -38 \\ 134 \\ 315 \end{pmatrix} + 5 \begin{pmatrix} 15 \\ -20 \\ -60 \end{pmatrix} \]

\[ = \begin{pmatrix} -38 + 75 \\ 134 – 100 \\ 315 – 300 \end{pmatrix} \]

\[ = \begin{pmatrix} 37 \\ 34 \\ 15 \end{pmatrix} \]

Final Answer: The hawk intercepts the duck at position vector:

\[ \begin{pmatrix} 37 \\ 34 \\ 15 \end{pmatrix} \]

……………………………Markscheme……………………………….

(a)

  • Correct magnitude calculation: \( 9 \) ms\(^{-1} \)

(b)

  • Correct vector equation: \( h = \begin{pmatrix} -38 \\ 134 \\ 315 \end{pmatrix} + t \begin{pmatrix} 15 \\ -20 \\ -60 \end{pmatrix} \)

(c)

  • Correct method for solving \( t = 5 \)
  • Correct substitution into position equation
  • Final answer: \( \begin{pmatrix} 37 \\ 34 \\ 15 \end{pmatrix} \)
Scroll to Top