IB Mathematics AHL 3.9 Geometric transformations AI HL Paper 2- Exam Style Questions- New Syllabus
A flying drone is programmed to complete a series of movements in a horizontal plane relative to an origin \( O \) and a set of \( x \)-\( y \)-axes. The movements are, in order:
• Rotation anticlockwise of \( \frac{\pi}{6} \) radians about \( O \)
• Reflection in the line \( y = \frac{x}{\sqrt{3}} \)
• Rotation clockwise of \( \frac{\pi}{3} \) radians about \( O \).
(a) (i) Write down each transformation in matrix form.
(ii) Find a single matrix \( P \) that represents the overall change in position.
(iii) Find \( P^2 \).
(iv) Hence state what the value of \( P^2 \) indicates for the movement of the drone.
(b) Three drones are initially at points \( A \), \( B \), and \( C \). After the movements, they are at points \( A’ \), \( B’ \), and \( C’ \) respectively. Show that the area of triangle \( ABC \) is equal to the area of triangle \( A’B’C’ \).
(c) Find a single transformation that is equivalent to the three transformations represented by matrix \( P \).
▶️ Answer/Explanation
(a)(i)
Rotation anticlockwise \( \frac{\pi}{6} \) radians:
\( \begin{pmatrix} \cos\left(\frac{\pi}{6}\right) & -\sin\left(\frac{\pi}{6}\right) \\ \sin\left(\frac{\pi}{6}\right) & \cos\left(\frac{\pi}{6}\right) \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \) (M1)(A1)
Reflection in the line \( y = \frac{x}{\sqrt{3}} \) (angle \( \theta = \frac{\pi}{6} \)):
\( \theta = \frac{\pi}{6} \), so \( 2\theta = \frac{\pi}{3} \).
Matrix: \( \begin{pmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{pmatrix} \).
Substitute: \( \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \), \( \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \).
\( \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \) (M1)(A1)(A1)
Rotation clockwise \( \frac{\pi}{3} \) radians (i.e., \( -\frac{\pi}{3} \)):
\( \begin{pmatrix} \cos\left(-\frac{\pi}{3}\right) & -\sin\left(-\frac{\pi}{3}\right) \\ \sin\left(-\frac{\pi}{3}\right) & \cos\left(-\frac{\pi}{3}\right) \end{pmatrix} \).
Substitute: \( \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \), \( \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \).
\( \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \) (A1)
Result:
Correct matrices.
(a)(ii)
Compute the overall transformation matrix \( P \) by multiplying the matrices in reverse order (right to left application):
Start with Rotation \( \frac{\pi}{6} \), then Reflection, then Rotation \( -\frac{\pi}{3} \).
\( P = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \times \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \times \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \) (M1).
First, \( \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \times \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \).
Then, multiply the result by \( \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \).
\( P = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \) (A1)(A1)
Result:
\( P \) as above.
(a)(iii)
Compute \( P^2 \) by multiplying \( P \) with itself:
\( P = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \).
\( P^2 = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \).
Element (1,1): \( \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} + \left(-\frac{1}{2}\right) \times \left(-\frac{1}{2}\right) = \frac{3}{4} + \frac{1}{4} = 1 \).
Element (1,2): \( \frac{\sqrt{3}}{2} \times \left(-\frac{1}{2}\right) + \left(-\frac{1}{2}\right) \times \left(-\frac{\sqrt{3}}{2}\right) = -\frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4} = 0 \).
Element (2,1): \( -\frac{1}{2} \times \frac{\sqrt{3}}{2} + \left(-\frac{\sqrt{3}}{2}\right) \times \left(-\frac{1}{2}\right) = -\frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4} = 0 \).
Element (2,2): \( -\frac{1}{2} \times \left(-\frac{1}{2}\right) + \left(-\frac{\sqrt{3}}{2}\right) \times \left(-\frac{\sqrt{3}}{2}\right) = \frac{1}{4} + \frac{3}{4} = 1 \).
\( P^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) (M1)(A1)
Result:
\( P^2 = I \), the identity matrix.
(a)(iv)
Since \( P^2 = I \), the identity matrix, applying the movement twice results in no net change.
This indicates the drone returns to its original position after two applications.
(R1)
Result:
The overall movement is an involution.
(b)
METHOD 1
Calculate the determinant of \( P \):
\( P = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \).
\( \det(P) = \left( \frac{\sqrt{3}}{2} \times -\frac{\sqrt{3}}{2} \right) – \left( -\frac{1}{2} \times -\frac{1}{2} \right) \).
\( = -\frac{3}{4} – \frac{1}{4} = -1 \).
\( |\det(P)| = |-1| = 1 \) (M1).
Since the absolute value of the determinant is \( 1 \), the area is preserved.
(R1)
METHOD 2
Rotations preserve area.
Reflections preserve area.
Thus, the combination of rotations and reflections preserves area.
(R1)(R1)
Result:
Areas are equal.
(c)
Compare \( P \) with a reflection matrix form:
\( P = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \).
This matches \( \begin{pmatrix} \cos(-\frac{\pi}{6}) & \sin(-\frac{\pi}{6}) \\ \sin(-\frac{\pi}{6}) & -\cos(-\frac{\pi}{6}) \end{pmatrix} \), where \( \cos(-\frac{\pi}{6}) = \frac{\sqrt{3}}{2} \) and \( \sin(-\frac{\pi}{6}) = -\frac{1}{2} \) (M1).
For a reflection matrix \( \begin{pmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{pmatrix} \), set \( 2\theta = -\frac{\pi}{6} \).
Solve for \( \theta \): \( \theta = -\frac{\pi}{12} \) (M1)(A1).
The line of reflection is \( y = \tan(\theta) x \), where \( \theta = -\frac{\pi}{12} \).
\( \tan(-\frac{\pi}{12}) \approx -0.268 \).
Thus, the line is \( y = -0.268x \) (A1).
Result:
Reflection in the line \( y = \tan(-\frac{\pi}{12}) x \).