Home / IB Mathematics SL 3.2 Use of sine, cosine and tangent ratios AI SL Paper 1- Exam Style Questions

IB Mathematics SL 3.2 Use of sine, cosine and tangent ratios AI SL Paper 1- Exam Style Questions- New Syllabus

Question

The Bermuda Triangle is a region of the Atlantic Ocean with Miami (M), Bermuda (B), and San Juan (S) as vertices, as shown in the diagram.

Diagram of the Bermuda Triangle with vertices Miami, Bermuda, and San Juan

A triangle with vertices labeled Miami (M), Bermuda (B), and San Juan (S) in the Atlantic Ocean.
The distances between M, B, and S are given in the following table, correct to three significant figures.
DistanceValue
Miami to Bermuda\( 1670 \, \text{km} \)
Bermuda to San Juan\( 1550 \, \text{km} \)
San Juan to Miami\( 1660 \, \text{km} \)
(a) Determine the value of θ, the measure of \( \angle M\hat{S}B \):[3]
(b) Determine the area of the Bermuda Triangle. [2]
▶️ Answer/Explanation
Markscheme
(a)
Use the cosine rule to find \( \theta = \angle M\hat{S}B \):
\( \cos \theta = \frac{SM^2 + SB^2 – MB^2}{2 \times SM \times SB} \). M1
Substitute: \( SM = 1660 \), \( SB = 1550 \), \( MB = 1670 \).
Compute: \( SM^2 = 1660^2 = 2755600 \), \( SB^2 = 1550^2 = 2402500 \), \( MB^2 = 1670^2 = 2788900 \).
Numerator: \( 2755600 + 2402500 – 2788900 = 2369200 \).
Denominator: \( 2 \times 1660 \times 1550 = 5146000 \).
Thus: \( \cos \theta = \frac{2369200}{5146000} \approx 0.460435 \). A1
Calculate: \( \theta = \cos^{-1}(0.460435) \approx 62.5873^\circ \).
Rounded: \( \theta \approx 62.6^\circ \) (or 1.09 radians). A1
[3 marks]
(b)
Use the area formula: \( A = \frac{1}{2} \times SM \times SB \times \sin(\theta) \). M1
Substitute: \( SM = 1660 \), \( SB = 1550 \), \( \theta = 62.5873^\circ \).
Compute: \( \sin(62.5873^\circ) \approx 0.887406 \).
Area: \( A = \frac{1}{2} \times 1660 \times 1550 \times 0.887406 \approx 1142043.327 \, \text{km}^2 \).
Rounded: \( A \approx 1140000 \, \text{km}^2 \) (or \( 1.14 \times 10^6 \)). A1
Note: Using \( \theta = 63^\circ \), \( \sin(63^\circ) \approx 0.891007 \), \( A \approx 1150000 \, \text{km}^2 \).
[2 marks]
Total Marks: 5
Scroll to Top