Home / IB DP Maths 2026, 2027 & 2028 / Application and Interpretation HL / IB Mathematics AI AHL Definition and calculation of the product MAI Study Notes

IB Mathematics AI AHL Definition and calculation of the product MAI Study Notes- New Syllabus

IB Mathematics AI AHL Definition and calculation of the product MAI Study Notes

LEARNING OBJECTIVE

  • Definition and calculation of the scalar and vector product of two vectors.

Key Concepts: 

  • The Scalar Product
  • The Vector Product
  • Components of vectors.

MAI HL and SL Notes – All topics

SCALAR (DOT) PRODUCT

Scalar Product (Dot Product)

 Definition

The scalar product, also known as the dot product, is an algebraic operation that takes two vectors and returns a scalar quantity (a real number). It is a measure of how much two vectors align with each other.

 Algebraic Formula

If \( \vec{a} = \langle a_1, a_2, a_3 \rangle \) and \( \vec{b} = \langle b_1, b_2, b_3 \rangle \), then: $ \vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3 $

Geometric Interpretation

The dot product is also defined as:

$ \vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta $

Where:

  • \( |\vec{a}| \), \( |\vec{b}| \) are the magnitudes of the vectors
  • \( \theta \) is the angle between the vectors

 Properties of Scalar Product

  • Commutative: \( \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} \)
  • Distributive over addition: \( \vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} \)
  • Scalar multiplication: \( (k\vec{a}) \cdot \vec{b} = k(\vec{a} \cdot \vec{b}) \)
  • Orthogonality: If \( \vec{a} \cdot \vec{b} = 0 \), then \( \vec{a} \) and \( \vec{b} \) are perpendicular.
  • Self dot product: \( \vec{a} \cdot \vec{a} = |\vec{a}|^2 \)

 Applications

  • Finding the angle between two vectors
  • Determining orthogonality (perpendicularity)
  • Work done: \( W = \vec{F} \cdot \vec{d} \)

Example: 

Let \( \vec{a} = \langle 3, 4 \rangle \), \( \vec{b} = \langle 2, -1 \rangle \).

Find:The scalar product \( \vec{a} \cdot \vec{b} \)

▶️ Show Solution

Scalar Product:

$ \vec{a} \cdot \vec{b} = 3 \cdot 2 + 4 \cdot (-1) = 6 – 4 = 2 $

ANGLE BETWEEN VECTORS

Angle Between Two Vectors

Concept

The angle between two vectors is the measure of the smallest angle \( \theta \in [0^\circ, 180^\circ] \) formed when the vectors are placed tail-to-tail. It tells us how much one vector must be rotated to align with the other.

 Formula

If \( \vec{a} \) and \( \vec{b} \) are two vectors, the angle \( \theta \) between them is given by:

$ \cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} \quad \Rightarrow \quad \theta = \cos^{-1} \left( \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} \right) $

 Key Requirements

  • Vectors must be in the same dimension (2D or 3D)
  • Dot product \( \vec{a} \cdot \vec{b} \) gives scalar projection
  • Magnitudes \( |\vec{a}| \), \( |\vec{b}| \) are required

 Interpretation

  • If \( \theta = 0^\circ \), vectors point in the same direction.
  • If \( \theta = 90^\circ \), vectors are perpendicular (\( \vec{a} \cdot \vec{b} = 0 \)).
  • If \( \theta = 180^\circ \), vectors point in opposite directions.

Example:

Let \( \vec{a} = \langle 4, -2 \rangle \), \( \vec{b} = \langle 1, 2 \rangle \). Find the angle between the vectors.

Find the dot product:

▶️Answer/Explanation

Solution:

$ \vec{a} \cdot \vec{b} = 4 \cdot 1 + (-2) \cdot 2 = 4 – 4 = 0 $

Find magnitudes:

$ |\vec{a}| = \sqrt{4^2 + (-2)^2} = \sqrt{16 + 4} = \sqrt{20} $ $ |\vec{b}| = \sqrt{1^2 + 2^2} = \sqrt{1 + 4} = \sqrt{5} $

Apply the formula:

$ \cos\theta = \frac{0}{\sqrt{20} \cdot \sqrt{5}} = 0 \Rightarrow \theta = \cos^{-1}(0) = 90^\circ $

Final Answer: \( \theta = 90^\circ \)

VECTOR CROSS PRODUCT

Vector Product (Cross Product)

 Definition

The vector product, also known as the cross product, is a binary operation on two vectors in three-dimensional space. It results in a vector that is perpendicular to both input vectors.

 Algebraic Formula

  • If \( \vec{a} = \langle a_1, a_2, a_3 \rangle \) and \( \vec{b} = \langle b_1, b_2, b_3 \rangle \), then:
  • $ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \langle a_2b_3 – a_3b_2,\; a_3b_1 – a_1b_3,\; a_1b_2 – a_2b_1 \rangle $
Geometric Interpretation

The magnitude of the cross product is given by:

$ |\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\sin\theta $

Where:

  • \( \theta \) is the angle between the vectors ( \( 0^\circ \leq \theta \leq 180^\circ \) )
  • Resulting vector is perpendicular to both \( \vec{a} \) and \( \vec{b} \)
  • Direction follows the right-hand rule

 Properties of Cross Product

  • Not commutative: \( \vec{a} \times \vec{b} = -(\vec{b} \times \vec{a}) \)
  • Distributive over addition: \( \vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} \)
  • Scalar multiplication: \( (k\vec{a}) \times \vec{b} = k(\vec{a} \times \vec{b}) \)
  • Zero vector: If \( \vec{a} \) is parallel to \( \vec{b} \), then \( \vec{a} \times \vec{b} = \vec{0} \)
  • Magnitude represents area: \( |\vec{a} \times \vec{b}| \) is the area of the parallelogram formed by \( \vec{a} \) and \( \vec{b} \)

 Applications

  • Finding a vector perpendicular to two given vectors
  • Computing torque: \( \vec{\tau} = \vec{r} \times \vec{F} \)
  • Finding area of parallelograms and triangles

Example:

Let \( \vec{a} = \langle 1, 2, 3 \rangle \), \( \vec{b} = \langle 4, 5, 6 \rangle \).

Find: The cross product \( \vec{a} \times \vec{b} \)

▶️ Show Solution

Cross Product:

$ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix} = \hat{i}(2 \cdot 6 – 3 \cdot 5) – \hat{j}(1 \cdot 6 – 3 \cdot 4) + \hat{k}(1 \cdot 5 – 2 \cdot 4) $

\( = \hat{i}(12 – 15) – \hat{j}(6 – 12) + \hat{k}(5 – 8) = \langle -3, 6, -3 \rangle \)

Example

Let

\(\vec{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}\) and \(\vec{v} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}\).

a) Find \(\vec{u} \cdot \vec{v}\).
b) Find \(\vec{u} \times \vec{v}\) and \(\vec{v} \times \vec{u}\).
c) Verify that \(\vec{u} \times \vec{v}\) is perpendicular to both \(\vec{u}\) and \(\vec{v}\).

▶️Answer/Explanation

Solution:

a) Dot product:
$\vec{u} \cdot \vec{v} = (1)(4) + (2)(5) + (3)(6) = 4 + 10 + 18 = 32$

b) Cross product:
$\vec{u} \times \vec{v} = \begin{pmatrix} (2)(6) – (5)(3) \\ (3)(4) – (6)(1) \\ (1)(5) – (4)(2) \end{pmatrix} = \begin{pmatrix} -3 \\ 6 \\ -3 \end{pmatrix}$
$\vec{v} \times \vec{u} = -\vec{u} \times \vec{v} = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix}$

c) Perpendicularity check:
$(\vec{u} \times \vec{v}) \cdot \vec{u} = (-3)(1) + (6)(2) + (-3)(3) = -3 + 12 – 9 = 0$
$(\vec{u} \times \vec{v}) \cdot \vec{v} = (-3)(4) + (6)(5) + (-3)(6) = -12 + 30 – 18 = 0$
Hence, \(\vec{u} \times \vec{v}\) is perpendicular to both \(\vec{u}\) and \(\vec{v}\).

THE MAGNITUDE OF \(\vec{u} \times \vec{v}\)

THE MAGNITUDE OF \(\vec{u} \times \vec{v}\)

Geometric Interpretation:

 The magnitude of \(\vec{u} \times \vec{v}\) equals the area of the parallelogram formed by \(\vec{u}\) and \(\vec{v}\).
 The area of the triangle formed by \(\vec{u}\) and \(\vec{v}\) is half of this:
$\text{Area of triangle} = \frac{1}{2} |\vec{u} \times \vec{v}|$

From the geometric definition:

$|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| \sin \theta$

Example

For

\(\vec{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}\) and \(\vec{v} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}\), we found \(\vec{u} \times \vec{v} = \begin{pmatrix} -3 \\ 6 \\ -3 \end{pmatrix}\).

 Area of parallelogram:
 Area of triangle:

▶️Answer/Explanation

Solution:

 Area of parallelogram:
$|\vec{u} \times \vec{v}| = \sqrt{(-3)^2 + 6^2 + (-3)^2} = \sqrt{54} \approx 7.35$
 Area of triangle:
$\frac{1}{2} \times 7.35 \approx 3.67$

Example

Find the area of the triangle determined by points

\(A(1, 1, 1)\), \(B(1, 3, 1)\), and \(C(-3, 3, 4)\).

Also Find 

$\overrightarrow{AB}$

▶️Answer/Explanation

Solution:

 Vectors:
$\overrightarrow{AB} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, \quad \overrightarrow{AC} = \begin{pmatrix} -4 \\ 2 \\ 3 \end{pmatrix}$

Cross product:
$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{pmatrix} 6 \\ 0 \\ 8 \end{pmatrix}$

Area of triangle:
$\frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} \sqrt{6^2 + 0^2 + 8^2} = \frac{1}{2} \times 10 = 5$

COMPONENTS OF VECTORS

In vector problems, we often break a vector into components along specific directions.
Suppose a force represented by vector a is applied, but we’re only interested in how much of that force acts in the direction of another vector b.

Only part of a contributes in the direction of b — this part is called the component of a in the direction of b.

Component of a in direction of b:

$
\text{component} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = |\vec{a}| \cos \theta
$

Where:

$\vec{a} \cdot \vec{b}$ is the dot product of vectors a and b
$|\vec{b}|$ is the magnitude of vector b
$\theta$ is the angle between vectors a and b

PERPENDICULAR COMPONENTS

In some situations (especially in Physics), we are interested in how much of vector a acts perpendicular to vector b.

This is called the perpendicular component of a to b, and it’s calculated as:

Perpendicular component of a to b:

$
\text{component}_\perp = \frac{|\vec{a} \times \vec{b}|}{|\vec{b}|} = |\vec{a}| \sin \theta
$

Where:

$\vec{a} \times \vec{b}$ is the magnitude of the cross product
$\theta$ is again the angle between vectors a and b

This tells you how much of vector a is acting in a direction that is orthogonal (at 90°) to b.

Example:

Let:

\( \vec{a} = 3\mathbf{i} + 4\mathbf{j}, \quad \vec{b} = 5\mathbf{i} + 5\mathbf{j} \)

Find:

  1. The component of a in the direction of b
  2. The component of a perpendicular to b
▶️Answer/Explanation

 Magnitudes

\( |\vec{a}| = \sqrt{3^2 + 4^2} = \sqrt{25} = 5 \)
\( |\vec{b}| = \sqrt{5^2 + 5^2} = \sqrt{50} = 5\sqrt{2} \)

Dot Product for Parallel Component

\( \vec{a} \cdot \vec{b} = (3)(5) + (4)(5) = 35 \)
\( \text{Component of } \vec{a} \text{ in direction of } \vec{b} = \frac{35}{5\sqrt{2}} = \frac{7}{\sqrt{2}} \approx 4.95 \)

Parallel component magnitude ≈ 4.95

Cross Product for Perpendicular Component

\( |\vec{a} \times \vec{b}| = |(3)(5) – (4)(5)| = |15 – 20| = 5 \)
\( \text{Perpendicular component} = \frac{5}{5\sqrt{2}} = \frac{1}{\sqrt{2}} \approx 0.71 \)

Perpendicular component magnitude ≈ 0.71

Scroll to Top