Home / IB DP Maths / Application and Interpretation HL / IB Mathematics AI AHL Vector applications to kinematics MAI Study Notes

IB Mathematics AI AHL Vector applications to kinematics MAI Study Notes- New Syllabus

IB Mathematics AI AHL Vector applications to kinematics MAI Study Notes

LEARNING OBJECTIVE

  • Vector applications to kinematics.

Key Concepts: 

  • Kinematics with Vectors
  • Constant & Variable Velocity

MAI HL and SL Notes – All topics

 KINEMATICS

A nice application of the vector equation of a line is the following:

VELOCITY AND SPEED

Suppose that a body is moving along a straight line with a constant velocity, and its position at time \( t \) is given by:

$\vec{r} = \vec{a} + t\vec{b}$

Then:

\(\vec{a}\) is the position of the body at time \( t = 0 \).
\(\vec{b}\) is the velocity vector of the body (usually denoted as \(\vec{v}\)).
\(|\vec{b}|\) is the speed of the body (usually denoted as \(|\vec{v}|\)).

The vectors (and thus the motion) can be in either 2D or 3D space.

Example

Suppose that a body is moving according to the equation:

$\vec{r} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 3 \\ 4 \end{pmatrix}$
where time is measured in seconds and distance in meters.

The initial position (at \( t = 0 \)) 
The position at time \( t = 1 \, \text{sec} \)
The velocity vector is \(\vec{v} =\).
The speed is \(|\vec{v}| = \).

▶️Answer/Explanation

Solution:

The initial position (at \( t = 0 \)) of the body is \((1, 2)\). It is \(\sqrt{1^2 + 2^2} = \sqrt{5} = 2.23 \, \text{m}\) far from the origin.
The position at time \( t = 1 \, \text{sec} \) is \((4, 6)\). It is \(\sqrt{4^2 + 6^2} = \sqrt{52} = 7.21 \, \text{m}\) far from the origin.
The velocity vector is \(\vec{v} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}\).
The speed is \(|\vec{v}| = \sqrt{3^2 + 4^2} = 5 \, \text{m/sec}\).

NOTE

If \(\vec{r} = \vec{a} + \lambda \vec{b}\) is an equation of a line, the direction vector \(\vec{b}\) can be substituted by any multiple of \(\vec{b}\).
However, if \(\vec{r} = \vec{a} + t\vec{b}\) is an equation of motion, the velocity vector \(\vec{b}\) cannot be substituted by a multiple of \(\vec{b}\).

Explanation:

Suppose a body is initially at position \( A(1, 2) \) and after 1 second at position \( B(5, 8) \). Then:
Velocity vector: \(\vec{v} = \overrightarrow{AB} = \begin{pmatrix} 4 \\ 6 \end{pmatrix}\).
Equation of motion: \(\vec{r} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 4 \\ 6 \end{pmatrix}\).

Suppose the body is initially at \( A(1, 2) \) and after 2 seconds at \( B(5, 8) \). Then:

The direction vector \(\vec{b} = \overrightarrow{AB} = \begin{pmatrix} 4 \\ 6 \end{pmatrix}\) corresponds to 2 seconds.
Velocity vector: \(\vec{v} = \frac{1}{2} \vec{b} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}\).
Equation of motion: \(\vec{r} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 2 \\ 3 \end{pmatrix}\).

Example

Suppose that a body is moving on a straight line (in 3D space) in the direction of the vector 

\(\vec{b} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}\) with speed \( 15 \, \text{ms}^{-1} \).

 Its initial position is \( A(1, 1, 1) \). Find the equation of the motion of the body.

▶️Answer/Explanation

Solution:

The magnitude of \(\vec{b}\) is \(|\vec{b}| = \sqrt{1^2 + 2^2 + 2^2} = 3\).
The unit vector is \(\hat{b} = \frac{1}{3} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}\).
Since the speed is 15, the velocity vector is:
$\vec{v} = 15 \hat{b} = 5 \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 10 \\ 10 \end{pmatrix}.$
Therefore, the equation of motion is:
$\vec{r} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + t \begin{pmatrix} 5 \\ 10 \\ 10 \end{pmatrix}.$

MOTION WITH VARIABLE VELOCITY IN 2D

Until now, the direction vector \(\vec{b}\) (or the velocity vector \(\vec{v}\)) was a constant vector. For example, if:

$\vec{r} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 3 \\ 4 \end{pmatrix},$

the velocity vector is \(\vec{v} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}\) (constant).

An alternative way to find the velocity vector is by using derivatives. If the motion is given by:

$\vec{r} = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix},$

then the velocity vector is:

$\vec{v} = \frac{d\vec{r}}{dt} = \begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \end{pmatrix}.$

Similarly, the acceleration is:

$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2} = \begin{pmatrix} \ddot{x}(t) \\ \ddot{y}(t) \end{pmatrix}.$

In the case of constant velocity, \(\vec{a} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}\).

Example

The equation of motion for a body is given by:

$\vec{r} = \begin{pmatrix} 1 + 3t \\ 2 + 4t + 5t^2 \end{pmatrix}.$

Find

Velocity: \(\vec{v} = \).
Acceleration: \(\vec{a} = \) 

At \( t = 0 \):
At \( t = 1 \):

▶️Answer/Explanation

Solution:

Velocity: \(\vec{v} = \frac{d\vec{r}}{dt} = \begin{pmatrix} 3 \\ 4 + 10t \end{pmatrix}\).
Acceleration: \(\vec{a} = \frac{d\vec{v}}{dt} = \begin{pmatrix} 0 \\ 10 \end{pmatrix}\) (constant).

At \( t = 0 \):
Initial position: \(\vec{r} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}\).
Initial velocity: \(\vec{v} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}\).
Initial speed: \(|\vec{v}| = \sqrt{3^2 + 4^2} = 5 \, \text{ms}^{-1}\).

After 1 second:
Position: \(\vec{r} = \begin{pmatrix} 4 \\ 11 \end{pmatrix}\).
Velocity: \(\vec{v} = \begin{pmatrix} 3 \\ 14 \end{pmatrix}\).
Acceleration: \(\vec{a} = \begin{pmatrix} 0 \\ 10 \end{pmatrix}\).
Speed: \(|\vec{v}| = \sqrt{3^2 + 14^2} = \sqrt{205} = 14.3 \, \text{ms}^{-1}\).

Example

If:

$\vec{r} = \begin{pmatrix} 1 + e^{2t} \\ 2 + t^3 \end{pmatrix},$

Find

Velocity: 
Acceleration: 

▶️Answer/Explanation

Solution:

 Velocity: \(\vec{v} = \frac{d\vec{r}}{dt} = \begin{pmatrix} 2e^{2t} \\ 3t^2 \end{pmatrix}\).
Acceleration: \(\vec{a} = \frac{d\vec{v}}{dt} = \begin{pmatrix} 4e^{2t} \\ 6t \end{pmatrix}\).

 ◆ CIRCULAR MOTION

Suppose that:

$\vec{r} = \begin{pmatrix} r \cos \omega t \\ r \sin \omega t \end{pmatrix}.$

Then:

$x^2 + y^2 = (r \cos \omega t)^2 + (r \sin \omega t)^2 = r^2 (\cos^2 \omega t + \sin^2 \omega t) = r^2.$

The equation \( x^2 + y^2 = r^2 \) represents a circle with center \( O(0, 0) \) and radius \( r \).

Thus, the body is moving on a circular path.

Example

If:

$\vec{r} = \begin{pmatrix} 2 \cos 0.1t \\ 2 \sin 0.1t \end{pmatrix},$

Find

Path: 
Velocity: 
Acceleration: 
Speed: 

▶️Answer/Explanation

Solution:

Path: \( x^2 + y^2 = 4 \) (circle of radius 2).
Velocity: \(\vec{v} = \frac{d\vec{r}}{dt} = \begin{pmatrix} -0.2 \sin 0.1t \\ 0.2 \cos 0.1t \end{pmatrix}\).
Acceleration: \(\vec{a} = \frac{d\vec{v}}{dt} = \begin{pmatrix} -0.02 \cos 0.1t \\ -0.02 \sin 0.1t \end{pmatrix}\).
Speed: \(|\vec{v}| = \sqrt{(-0.2 \sin 0.1t)^2 + (0.2 \cos 0.1t)^2} = 0.2 \, \text{ms}^{-1}\).

Scroll to Top