IB Mathematics AI AHL Vector equation of a line in two and three dimensions MAI Study Notes - New Syllabus
IB Mathematics AI AHL Vector equation of a line in two and three dimensions MAI Study Notes
LEARNING OBJECTIVE
- Vector equation of a line in two and three dimensions:
Key Concepts:
- Vector Equations of Lines
- Shortest Distances with Lines
- IBDP Maths AI SL- IB Style Practice Questions with Answer-Topic Wise-Paper 1
- IBDP Maths AI SL- IB Style Practice Questions with Answer-Topic Wise-Paper 2
- IB DP Maths AI HL- IB Style Practice Questions with Answer-Topic Wise-Paper 1
- IB DP Maths AI HL- IB Style Practice Questions with Answer-Topic Wise-Paper 2
- IB DP Maths AI HL- IB Style Practice Questions with Answer-Topic Wise-Paper 3
VECTOR EQUATION OF A LINE IN 2D
◆ VECTOR EQUATION
Let:
\( A(a_1, a_2) \) be a point with position vector \( \vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \).
\( \vec{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \) be a direction vector.
The vector equation of the line passing through \( A \) and parallel to \( \vec{b} \) is:
$
\vec{r} = \vec{a} + \lambda \vec{b}, \quad \text{or} \quad \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \lambda \begin{pmatrix} b_1 \\ b_2 \end{pmatrix},
$
where \( \lambda \) is a parameter.
◆ PARAMETRIC EQUATIONS
From the vector equation:
$
x = a_1 + \lambda b_1, \quad y = a_2 + \lambda b_2.
$
◆ CARTESIAN EQUATION
Solve both parametric equations for \( \lambda \):
$
\frac{x – a_1}{b_1} = \frac{y – a_2}{b_2}.
$
Example Given point \( A(1, 2) \) and direction vector \( \vec{b} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \): Vector equation: ▶️Answer/ExplanationSolution: Vector equation: |
◆ GIVEN TWO POINTS
For points \( A(a_1, a_2) \) and \( B(b_1, b_2) \), the line equation is:
$
\vec{r} = \vec{a} + \lambda (\vec{b} – \vec{a}).
$
Example Find the line through \( A(1, 2) \) and \( B(4, 7) \): Direction vector: \( \overrightarrow{AB} = \begin{pmatrix} 3 \\ 5 \end{pmatrix} \). ▶️Answer/ExplanationSolution: $ |
◆ INTERSECTION OF TWO LINES
Given lines:
$
\vec{r}_1 = \vec{a}_1 + \lambda \vec{b}_1, \quad \vec{r}_2 = \vec{a}_2 + \mu \vec{b}_2,
$
set \( \vec{r}_1 = \vec{r}_2 \) and solve for \( \lambda \) and \( \mu \).
Example Find the intersection of: $ ▶️Answer/ExplanationSolution: $ |
VECTOR EQUATION OF A LINE IN 3D
◆ VECTOR EQUATION
For a line through \( A(1, 2, 3) \) parallel to \( \vec{b} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \):
$
\vec{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}.
$
◆ PARAMETRIC EQUATIONS
$
x = 1 + 4\lambda, \quad y = 2 + 5\lambda, \quad z = 3 + 6\lambda.
$
◆ CARTESIAN EQUATIONS
Solve for \( \lambda \):
$
\frac{x – 1}{4} = \frac{y – 2}{5} = \frac{z – 3}{6}.
$
◆
Example Find the line through \( A(1, 2, 3) \) and \( B(5, 2, -1) \): Direction vector: \( \overrightarrow{AB} = \begin{pmatrix} 4 \\ 0 \\ -4 \end{pmatrix} \). ▶️Answer/ExplanationSolution: $ |
◆ INTERSECTION OF TWO LINES
In 3D, lines can be:
1. Parallel: \( \vec{b}_1 = k \vec{b}_2 \).
2. Intersecting: Solve \( \vec{r}_1 = \vec{r}_2 \).
3. Skew: Neither parallel nor intersecting.
Example Check if the lines intersect: $ ▶️Answer/ExplanationSolution: $ |
VECTOR EQUATION OF A LINE IN 3D (Distance Formulas)
1. Distance Between Two Points
Given points \( A(x_1,y_1,z_1) \) and \( B(x_2,y_2,z_2) \):
$
d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2 + (z_2-z_1)^2}
$
Example For A and B \( A(1,2,3) \) and \( B(2,7,9) \): Find distance between them. ▶️Answer/ExplanationSolution: $ |
Example Find the distance of A from line l. Point \( A(1,2,3) \) Line \( L: \vec{r} = \begin{pmatrix}3\\7\\9\end{pmatrix} + \lambda\begin{pmatrix}3\\2\\1\end{pmatrix} \) ▶️Answer/ExplanationSolution: 1. Let \( P(3+3\lambda, 7+2\lambda, 9+\lambda) \) be a general point on L Alternative Formula: |
3. Distance Between Parallel Lines
For lines \( L_1: \vec{r} = \vec{a}_1 + \lambda\vec{b} \) and \( L_2: \vec{r} = \vec{a}_2 + \mu\vec{b} \):
1. Pick point \( A \) on \( L_1 \)
2. Find distance from \( A \) to \( L_2 \) (as above)
4. Distance Between Skew Lines
Given non-parallel, non-intersecting lines:
$
L_1: \vec{r} = \vec{a}_1 + \lambda\vec{b}_1
$
$
L_2: \vec{r} = \vec{a}_2 + \mu\vec{b}_2
$
Method:
1. Find vector \( \overrightarrow{A_1A_2} = \vec{a}_2 – \vec{a}_1 \)
2. Compute \( \vec{b}_1 \times \vec{b}_2 \)
3. Distance:
$
d = \frac{|(\vec{a}_2 – \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2)|}{|\vec{b}_1 \times \vec{b}_2|}
$
Example For lines: $ Find the distance between the,. ▶️Answer/ExplanationSolution: 1. \( \vec{a}_2 – \vec{a}_1 = \begin{pmatrix}4\\5\\6\end{pmatrix} \) |