IB Mathematics AI AHL Definition and calculation of the product MAI Study Notes- New Syllabus
IB Mathematics AI AHL Definition and calculation of the product MAI Study Notes
LEARNING OBJECTIVE
- Definition and calculation of the scalar and vector product of two vectors.
Key Concepts:
- The Scalar Product
- The Vector Product
- Components of vectors.
- IBDP Maths AI SL- IB Style Practice Questions with Answer-Topic Wise-Paper 1
- IBDP Maths AI SL- IB Style Practice Questions with Answer-Topic Wise-Paper 2
- IB DP Maths AI HL- IB Style Practice Questions with Answer-Topic Wise-Paper 1
- IB DP Maths AI HL- IB Style Practice Questions with Answer-Topic Wise-Paper 2
- IB DP Maths AI HL- IB Style Practice Questions with Answer-Topic Wise-Paper 3
SCALAR (DOT) PRODUCT – ANGLE BETWEEN VECTORS
◆ GEOMETRIC DEFINITION
For vectors \(\vec{u}\), \(\vec{v}\) with angle \(\theta\) between them:
$
\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos\theta.
$
If \(|\vec{u}| = 5\), \(|\vec{v}| = 4\), \(\theta = 60^\circ\), then \(\vec{u} \cdot \vec{v} = 10\).
Special Cases:
\(\theta = 90^\circ \Rightarrow \vec{u} \cdot \vec{v} = 0\) (perpendicular).
\(\theta = 0^\circ \Rightarrow \vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\) (parallel, same direction).
\(\theta = 180^\circ \Rightarrow \vec{u} \cdot \vec{v} = -|\vec{u}||\vec{v}|\) (parallel, opposite direction).
◆ ALGEBRAIC DEFINITION
For \(\vec{u} = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}\), \(\vec{v} = \begin{pmatrix} a_2 \\ b_2 \end{pmatrix}\):
$\vec{u} \cdot \vec{v} = a_1a_2 + b_1b_2.$
Example For \(\begin{pmatrix} 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 4 \end{pmatrix} =?\). Find Dot Product of given vectors. ▶️Answer/ExplanationSolution: \(\begin{pmatrix} 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 4 \end{pmatrix} = 22\). |
◆ ANGLE BETWEEN VECTORS
$\cos\theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}.$
Example For \(\vec{u} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}\), \(\vec{v} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}\) Find Angle between given vectors. ▶️Answer/ExplanationSolution: $\cos\theta = \frac{-5}{5\sqrt{5}} = -\frac{1}{\sqrt{5}} \Rightarrow \theta \approx 116.6^\circ.$ |
◆ PERPENDICULAR AND PARALLEL VECTORS
Perpendicular: \(\vec{u} \cdot \vec{v} = 0\).
Parallel: \(\vec{u} = k\vec{v}\) for some scalar \(k\).
Example Find \(x\) such that \(\vec{v} = \begin{pmatrix} x \\ -6 \end{pmatrix}\) is 1. Perpendicular to \(\vec{u} = \) 2. Parallel to \(\vec{u}\): ▶️Answer/ExplanationSolution: 1. Perpendicular to \(\vec{u} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}\): |
◆ PROPERTY
\(|\vec{u}|^2 = \vec{u}^2\)
$|\vec{u} + \vec{v}| = |\vec{u} – \vec{v}| \Rightarrow \vec{u} \cdot \vec{v} = 0 \quad (\text{perpendicular vectors}).$
◆ 3D VECTORS
For \(\vec{u} = \begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix}\), \(\vec{v} = \begin{pmatrix} a_2 \\ b_2 \\ c_2 \end{pmatrix}\):
$\vec{u} \cdot \vec{v} = a_1a_2 + b_1b_2 + c_1c_2.$
Example: \(\begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ -3 \\ 14 \end{pmatrix} = 0\) (perpendicular).
VECTOR CROSS PRODUCT
◆ THE GEOMETRIC DEFINITION
Let \(\vec{u}\) and \(\vec{v}\) be two vectors, and let \(\theta\) be the angle between them (where \(0 \leq \theta \leq \pi\)).
The cross product (or vector product) of \(\vec{u}\) and \(\vec{v}\) is defined as a vector given by:
$\vec{u} \times \vec{v} = (|\vec{u}| |\vec{v}| \sin \theta) \vec{n}$
where \(\vec{n}\) is the unit vector perpendicular to both \(\vec{u}\) and \(\vec{v}\) and follows the “right-hand rule” (or “screw rule”):
If you place a screw at the common starting point of \(\vec{u}\) and \(\vec{v}\) and rotate it from \(\vec{u}\) to \(\vec{v}\), the screw will move in the direction of \(\vec{n}\).
Thus, \(\vec{u} \times \vec{v}\) is a new vector:
Perpendicular to both \(\vec{u}\) and \(\vec{v}\) (and hence to the plane they determine).
With magnitude \(|\vec{u}| |\vec{v}| \sin \theta\).
With direction given by \(\vec{n}\).
Note:
The commutative law does not hold for the cross product. Instead:
$\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}$
If \(\vec{u}\) and \(\vec{v}\) are parallel (\(\theta = 0\) or \(\pi\)), then \(\sin \theta = 0\), and \(\vec{u} \times \vec{v} = \vec{0}\).
◆ THE ALGEBRAIC DEFINITION
Let \(\vec{u} = \begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix}\) and \(\vec{v} = \begin{pmatrix} a_2 \\ b_2 \\ c_2 \end{pmatrix}\) be two vectors. The cross product is given by:
$\vec{u} \times \vec{v} = \begin{pmatrix} b_1 c_2 – b_2 c_1 \\ c_1 a_2 – c_2 a_1 \\ a_1 b_2 – a_2 b_1 \end{pmatrix}$
Memory Aid:
For the first component, ignore the first row of \(\vec{u}\) and \(\vec{v}\) and compute:
$\begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} = b_1 c_2 – b_2 c_1$
For the second component, ignore the second row and compute:
$\begin{vmatrix} c_1 & a_1 \\ c_2 & a_2 \end{vmatrix} = c_1 a_2 – c_2 a_1$
For the third component, ignore the third row and compute:
$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 – a_2 b_1$
Alternative Notation (Determinant Form):
$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$
where
\(\vec{i} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}\), \(\vec{j} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\), \(\vec{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\).
Example Let \(\vec{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}\) and \(\vec{v} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}\). a) Find \(\vec{u} \cdot \vec{v}\). ▶️Answer/ExplanationSolution: a) Dot product: b) Cross product: c) Perpendicularity check: |
Example Let \(\vec{u} = \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}\) and \(\vec{v} = \begin{pmatrix} 1 \\ 4 \\ 0 \end{pmatrix}\). a) Find \(\vec{u} \times \vec{v}\) using the algebraic definition. ▶️Answer/ExplanationSolution: a) Cross product: b) Angle \(\theta\): c) Unit vector \(\vec{n}\): d) Geometric definition: e) Perpendicularity: |
THE MAGNITUDE OF \(\vec{u} \times \vec{v}\)
◆ THE MAGNITUDE OF \(\vec{u} \times \vec{v}\)
From the geometric definition:
$|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| \sin \theta$
Geometric Interpretation:
The magnitude of \(\vec{u} \times \vec{v}\) equals the area of the parallelogram formed by \(\vec{u}\) and \(\vec{v}\).
The area of the triangle formed by \(\vec{u}\) and \(\vec{v}\) is half of this:
$\text{Area of triangle} = \frac{1}{2} |\vec{u} \times \vec{v}|$
Example For \(\vec{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}\) and \(\vec{v} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}\), we found \(\vec{u} \times \vec{v} = \begin{pmatrix} -3 \\ 6 \\ -3 \end{pmatrix}\). Area of parallelogram: ▶️Answer/ExplanationSolution: Area of parallelogram: |
Example Find the area of the triangle determined by points \(A(1, 1, 1)\), \(B(1, 3, 1)\), and \(C(-3, 3, 4)\). Also Find $\overrightarrow{AB}$ ▶️Answer/ExplanationSolution: Vectors: Cross product: Area of triangle: |
COMPONENTS
In vector problems, we often break a vector into components along specific directions.
Suppose a force represented by vector a is applied, but we’re only interested in how much of that force acts in the direction of another vector b.
Only part of a contributes in the direction of b — this part is called the component of a in the direction of b.
Component of a in direction of b:
$
\text{component} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = |\vec{a}| \cos \theta
$
Where:
$\vec{a} \cdot \vec{b}$ is the dot product of vectors a and b
$|\vec{b}|$ is the magnitude of vector b
$\theta$ is the angle between vectors a and b
PERPENDICULAR COMPONENTS
In some situations (especially in Physics), we are interested in how much of vector a acts perpendicular to vector b.
This is called the perpendicular component of a to b, and it’s calculated as:
Perpendicular component of a to b:
$
\text{component}_\perp = \frac{|\vec{a} \times \vec{b}|}{|\vec{b}|} = |\vec{a}| \sin \theta
$
Where:
$\vec{a} \times \vec{b}$ is the magnitude of the cross product
$\theta$ is again the angle between vectors a and b
This tells you how much of vector a is acting in a direction that is orthogonal (at 90°) to b.
Example: Let: \( \vec{a} = 3\mathbf{i} + 4\mathbf{j}, \quad \vec{b} = 5\mathbf{i} + 5\mathbf{j} \) Find:
▶️Answer/ExplanationMagnitudes \( |\vec{a}| = \sqrt{3^2 + 4^2} = \sqrt{25} = 5 \) Dot Product for Parallel Component \( \vec{a} \cdot \vec{b} = (3)(5) + (4)(5) = 35 \) Parallel component magnitude ≈ 4.95 Cross Product for Perpendicular Component \( |\vec{a} \times \vec{b}| = |(3)(5) – (4)(5)| = |15 – 20| = 5 \) Perpendicular component magnitude ≈ 0.71 |