Home / IB DP Maths / Application and Interpretation HL / IB Mathematics AI AHL Definition and calculation of the product MAI Study Notes

IB Mathematics AI AHL Definition and calculation of the product MAI Study Notes- New Syllabus

IB Mathematics AI AHL Definition and calculation of the product MAI Study Notes

LEARNING OBJECTIVE

  • Definition and calculation of the scalar and vector product of two vectors.

Key Concepts: 

  • The Scalar Product
  • The Vector Product
  • Components of vectors.

MAI HL and SL Notes – All topics

SCALAR (DOT) PRODUCT – ANGLE BETWEEN VECTORS

 

GEOMETRIC DEFINITION

For vectors \(\vec{u}\), \(\vec{v}\) with angle \(\theta\) between them:

$
\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos\theta.
$

 If \(|\vec{u}| = 5\), \(|\vec{v}| = 4\), \(\theta = 60^\circ\), then \(\vec{u} \cdot \vec{v} = 10\).

Special Cases:

\(\theta = 90^\circ \Rightarrow \vec{u} \cdot \vec{v} = 0\) (perpendicular).
\(\theta = 0^\circ \Rightarrow \vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\) (parallel, same direction).
\(\theta = 180^\circ \Rightarrow \vec{u} \cdot \vec{v} = -|\vec{u}||\vec{v}|\) (parallel, opposite direction).

ALGEBRAIC DEFINITION

For \(\vec{u} = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}\), \(\vec{v} = \begin{pmatrix} a_2 \\ b_2 \end{pmatrix}\):

$\vec{u} \cdot \vec{v} = a_1a_2 + b_1b_2.$

Example

For

  \(\begin{pmatrix} 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 4 \end{pmatrix} =?\).

Find Dot Product of given vectors.

▶️Answer/Explanation

Solution:

\(\begin{pmatrix} 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 4 \end{pmatrix} = 22\).

ANGLE BETWEEN VECTORS

$\cos\theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}.$

Example

For

\(\vec{u} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}\), \(\vec{v} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}\)

Find Angle between given vectors.

▶️Answer/Explanation

Solution:

$\cos\theta = \frac{-5}{5\sqrt{5}} = -\frac{1}{\sqrt{5}} \Rightarrow \theta \approx 116.6^\circ.$

PERPENDICULAR AND PARALLEL VECTORS

Perpendicular: \(\vec{u} \cdot \vec{v} = 0\).
Parallel: \(\vec{u} = k\vec{v}\) for some scalar \(k\).

Example

Find \(x\) such that \(\vec{v} = \begin{pmatrix} x \\ -6 \end{pmatrix}\) is

1. Perpendicular to \(\vec{u} = \)

2. Parallel to \(\vec{u}\):

▶️Answer/Explanation

Solution:

1. Perpendicular to \(\vec{u} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}\):
$3x – 24 = 0 \Rightarrow x = 8.$
2. Parallel to \(\vec{u}\):
$\frac{x}{3} = \frac{-6}{4} \Rightarrow x = -\frac{9}{2}.$

PROPERTY

\(|\vec{u}|^2 = \vec{u}^2\)
$|\vec{u} + \vec{v}| = |\vec{u} – \vec{v}| \Rightarrow \vec{u} \cdot \vec{v} = 0 \quad (\text{perpendicular vectors}).$

3D VECTORS

For \(\vec{u} = \begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix}\), \(\vec{v} = \begin{pmatrix} a_2 \\ b_2 \\ c_2 \end{pmatrix}\):
$\vec{u} \cdot \vec{v} = a_1a_2 + b_1b_2 + c_1c_2.$

Example: \(\begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ -3 \\ 14 \end{pmatrix} = 0\) (perpendicular).

VECTOR CROSS PRODUCT

THE GEOMETRIC DEFINITION 

Let \(\vec{u}\) and \(\vec{v}\) be two vectors, and let \(\theta\) be the angle between them (where \(0 \leq \theta \leq \pi\)).

The cross product (or vector product) of \(\vec{u}\) and \(\vec{v}\) is defined as a vector given by:

$\vec{u} \times \vec{v} = (|\vec{u}| |\vec{v}| \sin \theta) \vec{n}$
where \(\vec{n}\) is the unit vector perpendicular to both \(\vec{u}\) and \(\vec{v}\) and follows the “right-hand rule” (or “screw rule”):

 If you place a screw at the common starting point of \(\vec{u}\) and \(\vec{v}\) and rotate it from \(\vec{u}\) to \(\vec{v}\), the screw will move in the direction of \(\vec{n}\).

Thus, \(\vec{u} \times \vec{v}\) is a new vector:

Perpendicular to both \(\vec{u}\) and \(\vec{v}\) (and hence to the plane they determine).
With magnitude \(|\vec{u}| |\vec{v}| \sin \theta\).
With direction given by \(\vec{n}\).

Note:

The commutative law does not hold for the cross product. Instead:

$\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}$
 If \(\vec{u}\) and \(\vec{v}\) are parallel (\(\theta = 0\) or \(\pi\)), then \(\sin \theta = 0\), and \(\vec{u} \times \vec{v} = \vec{0}\).

THE ALGEBRAIC DEFINITION 

Let \(\vec{u} = \begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix}\) and \(\vec{v} = \begin{pmatrix} a_2 \\ b_2 \\ c_2 \end{pmatrix}\) be two vectors. The cross product is given by:

$\vec{u} \times \vec{v} = \begin{pmatrix} b_1 c_2 – b_2 c_1 \\ c_1 a_2 – c_2 a_1 \\ a_1 b_2 – a_2 b_1 \end{pmatrix}$

Memory Aid:

For the first component, ignore the first row of \(\vec{u}\) and \(\vec{v}\) and compute:

$\begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} = b_1 c_2 – b_2 c_1$

For the second component, ignore the second row and compute:

$\begin{vmatrix} c_1 & a_1 \\ c_2 & a_2 \end{vmatrix} = c_1 a_2 – c_2 a_1$

For the third component, ignore the third row and compute:

$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 – a_2 b_1$

Alternative Notation (Determinant Form):

$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$

where

\(\vec{i} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}\), \(\vec{j} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\), \(\vec{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\).

Example

Let

\(\vec{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}\) and \(\vec{v} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}\).

a) Find \(\vec{u} \cdot \vec{v}\).
b) Find \(\vec{u} \times \vec{v}\) and \(\vec{v} \times \vec{u}\).
c) Verify that \(\vec{u} \times \vec{v}\) is perpendicular to both \(\vec{u}\) and \(\vec{v}\).

▶️Answer/Explanation

Solution:

a) Dot product:
$\vec{u} \cdot \vec{v} = (1)(4) + (2)(5) + (3)(6) = 4 + 10 + 18 = 32$

b) Cross product:
$\vec{u} \times \vec{v} = \begin{pmatrix} (2)(6) – (5)(3) \\ (3)(4) – (6)(1) \\ (1)(5) – (4)(2) \end{pmatrix} = \begin{pmatrix} -3 \\ 6 \\ -3 \end{pmatrix}$
$\vec{v} \times \vec{u} = -\vec{u} \times \vec{v} = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix}$

c) Perpendicularity check:
$(\vec{u} \times \vec{v}) \cdot \vec{u} = (-3)(1) + (6)(2) + (-3)(3) = -3 + 12 – 9 = 0$
$(\vec{u} \times \vec{v}) \cdot \vec{v} = (-3)(4) + (6)(5) + (-3)(6) = -12 + 30 – 18 = 0$
Hence, \(\vec{u} \times \vec{v}\) is perpendicular to both \(\vec{u}\) and \(\vec{v}\).

Example

Let

\(\vec{u} = \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}\) and \(\vec{v} = \begin{pmatrix} 1 \\ 4 \\ 0 \end{pmatrix}\).

a) Find \(\vec{u} \times \vec{v}\) using the algebraic definition.
b) Find the angle \(\theta\) between \(\vec{u}\) and \(\vec{v}\).
c) Find the unit vector \(\vec{n}\).
d) Find \(\vec{u} \times \vec{v}\) using the geometric definition.
e) Verify perpendicularity.

▶️Answer/Explanation

Solution:

a) Cross product:
$\vec{u} \times \vec{v} = \begin{pmatrix} (2)(0) – (4)(0) \\ (0)(1) – (0)(3) \\ (3)(4) – (1)(2) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 10 \end{pmatrix}$

b) Angle \(\theta\):
$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|} = \frac{11}{\sqrt{13} \sqrt{17}} \approx 0.74 \implies \theta \approx 42.27^\circ$

c) Unit vector \(\vec{n}\):
Since \(\vec{u}\) and \(\vec{v}\) lie in the \(xy\)-plane, \(\vec{n}\) is parallel to the \(z\)-axis. From the cross product result:
$\vec{n} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

d) Geometric definition:
$\vec{u} \times \vec{v} = (|\vec{u}| |\vec{v}| \sin \theta) \vec{n} = (\sqrt{13} \sqrt{17} \sin 42.27^\circ) \vec{n} \approx 10 \vec{n} = \begin{pmatrix} 0 \\ 0 \\ 10 \end{pmatrix}$

e) Perpendicularity:
Clearly, \(\vec{u} \times \vec{v}\) is parallel to \(\vec{n}\) and thus perpendicular to both \(\vec{u}\) and \(\vec{v}\).

THE MAGNITUDE OF \(\vec{u} \times \vec{v}\)

THE MAGNITUDE OF \(\vec{u} \times \vec{v}\)

From the geometric definition:

$|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| \sin \theta$

Geometric Interpretation:

 The magnitude of \(\vec{u} \times \vec{v}\) equals the area of the parallelogram formed by \(\vec{u}\) and \(\vec{v}\).
 The area of the triangle formed by \(\vec{u}\) and \(\vec{v}\) is half of this:
$\text{Area of triangle} = \frac{1}{2} |\vec{u} \times \vec{v}|$

Example

For

\(\vec{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}\) and \(\vec{v} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}\), we found \(\vec{u} \times \vec{v} = \begin{pmatrix} -3 \\ 6 \\ -3 \end{pmatrix}\).

 Area of parallelogram:
 Area of triangle:

▶️Answer/Explanation

Solution:

 Area of parallelogram:
$|\vec{u} \times \vec{v}| = \sqrt{(-3)^2 + 6^2 + (-3)^2} = \sqrt{54} \approx 7.35$
 Area of triangle:
$\frac{1}{2} \times 7.35 \approx 3.67$

Example

Find the area of the triangle determined by points

\(A(1, 1, 1)\), \(B(1, 3, 1)\), and \(C(-3, 3, 4)\).

Also Find 

$\overrightarrow{AB}$

▶️Answer/Explanation

Solution:

 Vectors:
$\overrightarrow{AB} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, \quad \overrightarrow{AC} = \begin{pmatrix} -4 \\ 2 \\ 3 \end{pmatrix}$

Cross product:
$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{pmatrix} 6 \\ 0 \\ 8 \end{pmatrix}$

Area of triangle:
$\frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} \sqrt{6^2 + 0^2 + 8^2} = \frac{1}{2} \times 10 = 5$

COMPONENTS

In vector problems, we often break a vector into components along specific directions.
Suppose a force represented by vector a is applied, but we’re only interested in how much of that force acts in the direction of another vector b.

Only part of a contributes in the direction of b — this part is called the component of a in the direction of b.
Component of a in direction of b:

$
\text{component} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = |\vec{a}| \cos \theta
$

Where:

$\vec{a} \cdot \vec{b}$ is the dot product of vectors a and b
$|\vec{b}|$ is the magnitude of vector b
$\theta$ is the angle between vectors a and b

PERPENDICULAR COMPONENTS

In some situations (especially in Physics), we are interested in how much of vector a acts perpendicular to vector b.

This is called the perpendicular component of a to b, and it’s calculated as:

Perpendicular component of a to b:

$
\text{component}_\perp = \frac{|\vec{a} \times \vec{b}|}{|\vec{b}|} = |\vec{a}| \sin \theta
$

Where:

$\vec{a} \times \vec{b}$ is the magnitude of the cross product
$\theta$ is again the angle between vectors a and b

This tells you how much of vector a is acting in a direction that is orthogonal (at 90°) to b.

Example:

Let:

\( \vec{a} = 3\mathbf{i} + 4\mathbf{j}, \quad \vec{b} = 5\mathbf{i} + 5\mathbf{j} \)

Find:

  1. The component of a in the direction of b
  2. The component of a perpendicular to b
▶️Answer/Explanation

 Magnitudes

\( |\vec{a}| = \sqrt{3^2 + 4^2} = \sqrt{25} = 5 \)
\( |\vec{b}| = \sqrt{5^2 + 5^2} = \sqrt{50} = 5\sqrt{2} \)

Dot Product for Parallel Component

\( \vec{a} \cdot \vec{b} = (3)(5) + (4)(5) = 35 \)
\( \text{Component of } \vec{a} \text{ in direction of } \vec{b} = \frac{35}{5\sqrt{2}} = \frac{7}{\sqrt{2}} \approx 4.95 \)

Parallel component magnitude ≈ 4.95

Cross Product for Perpendicular Component

\( |\vec{a} \times \vec{b}| = |(3)(5) – (4)(5)| = |15 – 20| = 5 \)
\( \text{Perpendicular component} = \frac{5}{5\sqrt{2}} = \frac{1}{\sqrt{2}} \approx 0.71 \)

Perpendicular component magnitude ≈ 0.71

Scroll to Top